51 research outputs found

    Long-term Exposure to Traffic-related Air Pollution and Type 2 Diabetes Prevalence in a Cross-sectional Screening-study in the Netherlands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Air pollution may promote type 2 diabetes by increasing adipose inflammation and insulin resistance. This study examined the relation between long-term exposure to traffic-related air pollution and type 2 diabetes prevalence among 50- to 75-year-old subjects living in Westfriesland, the Netherlands.</p> <p>Methods</p> <p>Participants were recruited in a cross-sectional diabetes screening-study conducted between 1998 and 2000. Exposure to traffic-related air pollution was characterized at the participants' home-address. Indicators of exposure were land use regression modeled nitrogen dioxide (NO<sub>2</sub>) concentration, distance to the nearest main road, traffic flow at the nearest main road and traffic in a 250 m circular buffer. Crude and age-, gender- and neighborhood income adjusted associations were examined by logistic regression.</p> <p>Results</p> <p>8,018 participants were included, of whom 619 (8%) subjects had type 2 diabetes. Smoothed plots of exposure versus type 2 diabetes supported some association with traffic in a 250 m buffer (the highest three quartiles compared to the lowest also showed increased prevalence, though non-significant and not increasing with increasing quartile), but not with the other exposure metrics. Modeled NO<sub>2</sub>-concentration, distance to the nearest main road and traffic flow at the nearest main road were not associated with diabetes. Exposure-response relations seemed somewhat more pronounced for women than for men (non-significant).</p> <p>Conclusions</p> <p>We did not find consistent associations between type 2 diabetes prevalence and exposure to traffic-related air pollution, though there were some indications for a relation with traffic in a 250 m buffer.</p

    Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity

    Get PDF

    Perivascular Fat and the Microcirculation: Relevance to Insulin Resistance, Diabetes, and Cardiovascular Disease

    Get PDF
    Type 2 diabetes and its major risk factor, obesity, are a growing burden for public health. The mechanisms that connect obesity and its related disorders, such as insulin resistance, type 2 diabetes, and hypertension, are still undefined. Microvascular dysfunction may be a pathophysiologic link between insulin resistance and hypertension in obesity. Many studies have shown that adipose tissue-derived substances (adipokines) interact with (micro)vascular function and influence insulin sensitivity. In the past, research focused on adipokines from perivascular adipose tissue (PVAT). In this review, we focus on the interactions between adipokines, predominantly from PVAT, and microvascular function in relation to the development of insulin resistance, diabetes, and cardiovascular disease

    Glycaemic instability is an underestimated problem in Type II diabetes.

    No full text
    The aim of the present study was to assess the level of glycaemic control by the measurement of 24 h blood glucose profiles and standard blood analyses under identical nutritional and physical activity conditions in patients with Type II diabetes and healthy normoglycaemic controls. A total of 11 male patients with Type II diabetes and 11 healthy matched controls participated in a 24 h CGMS (continuous subcutaneous glucose-monitoring system) assessment trial under strictly standardized dietary and physical activity conditions. In addition, fasting plasma glucose, insulin and HbA(1c) (glycated haemoglobin) concentrations were measured, and an OGTT (oral glucose tolerance test) was performed to calculate indices of whole-body insulin sensitivity, oral glucose tolerance and/or glycaemic control. In the healthy control group, hyperglycaemia (blood glucose concentration >10 mmol/l) was hardly present (2+/-1% or 0.4+/-0.2/24 h). However, in the patients with Type II diabetes, hyperglycaemia was experienced for as much as 55+/-7% of the time (13+/-2 h over 24 h) while using the same standardized diet. Breakfast-related hyperglycaemia contributed most (46+/-7%; P<0.01 as determined by ANOVA) to the total amount of hyperglycaemia and postprandial glycaemic instability. In the diabetes patients, blood HbA(1c) content correlated well with the duration of hyperglycaemia and the postprandial glucose responses (P<0.05). In conclusion, CGMS determinations show that standard measurements of glycaemic control underestimate the amount of hyperglycaemia prevalent during real-life conditions in Type II diabetes. Given the macro- and micro-vascular damage caused by postprandial hyperglycaemia, CGMS provides an excellent tool to evaluate alternative therapeutic strategies to reduce hyperglycaemic blood glucose excursions

    Sex differences in the risk of vascular disease associated with diabetes

    Get PDF
    Diabetes is a strong risk factor for vascular disease. There is compelling evidence that the relative risk of vascular disease associated with diabetes is substantially higher in women than men. The mechanisms that explain the sex difference have not been identified. However, this excess risk could be due to certain underlying biological differences between women and men. In addition to other cardiometabolic pathways, sex differences in body anthropometry and patterns of storage of adipose tissue may be of particular importance in explaining the sex differences in the relative risk of diabetes-associated vascular diseases. Besides biological factors, differences in the uptake and provision of health care could also play a role in women's greater excess risk of diabetic vascular complications. In this review, we will discuss the current knowledge regarding sex differences in both biological factors, with a specific focus on sex differences adipose tissue, and in health care provided for the prevention, management, and treatment of diabetes and its vascular complications. While progress has been made towards understanding the underlying mechanisms of women's higher relative risk of diabetic vascular complications, many uncertainties remain. Future research to understanding these mechanisms could contribute to more awareness of the sex-specific risk factors and could eventually lead to more personalized diabetes care. This will ensure that women are not affected by diabetes to a greater extent and will help to diminish the burden in both women and men
    corecore