33 research outputs found
A Similarity Measure for GPU Kernel Subgraph Matching
Accelerator architectures specialize in executing SIMD (single instruction,
multiple data) in lockstep. Because the majority of CUDA applications are
parallelized loops, control flow information can provide an in-depth
characterization of a kernel. CUDAflow is a tool that statically separates CUDA
binaries into basic block regions and dynamically measures instruction and
basic block frequencies. CUDAflow captures this information in a control flow
graph (CFG) and performs subgraph matching across various kernel's CFGs to gain
insights to an application's resource requirements, based on the shape and
traversal of the graph, instruction operations executed and registers
allocated, among other information. The utility of CUDAflow is demonstrated
with SHOC and Rodinia application case studies on a variety of GPU
architectures, revealing novel thread divergence characteristics that
facilitates end users, autotuners and compilers in generating high performing
code
