456 research outputs found
Stringy effects in black hole decay
We compute the low energy decay rates of near-extremal three(four) charge
black holes in five(four) dimensional N=4 string theory to sub-leading order in
the large charge approximation. This involves studying stringy corrections to
scattering amplitudes of a scalar field off a black hole. We adapt and use
recently developed techniques to compute such amplitudes as near-horizon
quantities. We then compare this with the corresponding calculation in the
microscopic configuration carrying the same charges as the black hole. We find
perfect agreement between the microscopic and macroscopic calculations; in the
cases we study, the zero energy limit of the scattering cross section is equal
to four times the Wald entropy of the black hole.Comment: 32 page
Electric-field control of magnetic domain wall motion and local magnetization reversal
Spintronic devices currently rely on magnetic switching or controlled motion
of domain walls by an external magnetic field or spin-polarized current.
Achieving the same degree of magnetic controllability using an electric field
has potential advantages including enhanced functionality and low power
consumption. Here, we report on an approach to electrically control local
magnetic properties, including the writing and erasure of regular ferromagnetic
domain patterns and the motion of magnetic domain walls, in multiferroic
CoFe-BaTiO3 heterostructures. Our method is based on recurrent strain transfer
from ferroelastic domains in ferroelectric media to continuous magnetostrictive
films with negligible magnetocrystalline anisotropy. Optical polarization
microscopy of both ferromagnetic and ferroelectric domain structures reveals
that domain correlations and strong inter-ferroic domain wall pinning persist
in an applied electric field. This leads to an unprecedented electric
controllability over the ferromagnetic microstructure, an accomplishment that
produces giant magnetoelectric coupling effects and opens the way to
multiferroic spintronic devices.Comment: 6 pages, 4 figure
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing
The evolution of burrowing animals forms a defining event in the history of the Earth. It has been hypothesised that the expansion of seafloor burrowing during the Palaeozoic altered the biogeochemistry of the oceans and atmosphere. However, whilst potential impacts of bioturbation on the individual phosphorus, oxygen and sulphur cycles have been considered, combined effects have not been investigated, leading to major uncertainty over the timing and magnitude of the Earth system response to the evolution of bioturbation. Here we integrate the evolution of bioturbation into the COPSE model of global biogeochemical cycling, and compare quantitative model predictions to multiple geochemical proxies. Our results suggest that the advent of shallow burrowing in the early Cambrian contributed to a global low-oxygen state, which prevailed for ~100 million years. This impact of bioturbation on global biogeochemistry likely affected animal evolution through expanded ocean anoxia, high atmospheric CO2 levels and global warming
Combined Analysis of Murine and Human Microarrays and ChIP Analysis Reveals Genes Associated with the Ability of MYC To Maintain Tumorigenesis
The MYC oncogene has been implicated in the regulation of up to thousands of genes involved in many cellular programs including proliferation, growth, differentiation, self-renewal, and apoptosis. MYC is thought to induce cancer through an exaggerated effect on these physiologic programs. Which of these genes are responsible for the ability of MYC to initiate and/or maintain tumorigenesis is not clear. Previously, we have shown that upon brief MYC inactivation, some tumors undergo sustained regression. Here we demonstrate that upon MYC inactivation there are global permanent changes in gene expression detected by microarray analysis. By applying StepMiner analysis, we identified genes whose expression most strongly correlated with the ability of MYC to induce a neoplastic state. Notably, genes were identified that exhibited permanent changes in mRNA expression upon MYC inactivation. Importantly, permanent changes in gene expression could be shown by chromatin immunoprecipitation (ChIP) to be associated with permanent changes in the ability of MYC to bind to the promoter regions. Our list of candidate genes associated with tumor maintenance was further refined by comparing our analysis with other published results to generate a gene signature associated with MYC-induced tumorigenesis in mice. To validate the role of gene signatures associated with MYC in human tumorigenesis, we examined the expression of human homologs in 273 published human lymphoma microarray datasets in Affymetrix U133A format. One large functional group of these genes included the ribosomal structural proteins. In addition, we identified a group of genes involved in a diverse array of cellular functions including: BZW2, H2AFY, SFRS3, NAP1L1, NOLA2, UBE2D2, CCNG1, LIFR, FABP3, and EDG1. Hence, through our analysis of gene expression in murine tumor models and human lymphomas, we have identified a novel gene signature correlated with the ability of MYC to maintain tumorigenesis
Transport in Anisotropic Superfluids: A Holographic Description
We study transport phenomena in p-wave superfluids in the context of
gauge/gravity duality. Due to the spacetime anisotropy of this system, the
tensorial structure of the transport coefficients is non-trivial in contrast to
the isotropic case. In particular, there is an additional shear mode which
leads to a non-universal value of the shear viscosity even in an Einstein
gravity setup. In this paper, we present a complete study of the helicity two
and helicity one fluctuation modes. In addition to the non-universal shear
viscosity, we also investigate the thermoelectric effect, i.e. the mixing of
electric and heat current. Moreover, we also find an additional effect due to
the anisotropy, the so-called flexoelectric effect.Comment: 38 pages, 11 figures; v2: typos corrected. arXiv admin note:
substantial text overlap with arXiv:1011.591
Genome of the red alga Porphyridium purpureum
The limited knowledge we have about red algal genomes comes from the highly specialized extremophiles, Cyanidiophyceae. Here, we describe the first genome sequence from a mesophilic, unicellular red alga, Porphyridium purpureum. The 8,355 predicted genes in P. purpureum, hundreds of which are likely to be implicated in a history of horizontal gene transfer, reside in a genome of 19.7 Mbp with 235 spliceosomal introns. Analysis of light-harvesting complex proteins reveals a nuclear-encoded phycobiliprotein in the alga. We uncover a complex set of carbohydrate-active enzymes, identify the genes required for the methylerythritol phosphate pathway of isoprenoid biosynthesis, and find evidence of sexual reproduction. Analysis of the compact, function-rich genome of P. purpureum suggests that ancestral lineages of red algae acted as mediators of horizontal gene transfer between prokaryotes and photosynthetic eukaryotes, thereby significantly enriching genomes across the tree of photosynthetic life
Aqueous-Phase Synthesis of Silver Nanodiscs and Nanorods in Methyl Cellulose Matrix: Photophysical Study and Simulation of UV–Vis Extinction Spectra Using DDA Method
We present a very simple and effective way for the synthesis of tunable coloured silver sols having different morphologies. The procedure is based on the seed-mediated growth approach where methyl cellulose (MC) has been used as soft-template in the growth solution. Nanostructures of varying morphologies as well as colour of the silver sols are controlled by altering the concentration of citrate in the growth solution. Similar to the polymers in the solution, citrate ions also dynamically adsorbed on the growing silver nanoparticles and promote one (1-D) and two-dimensional (2-D) growth of nanoparticles. Silver nanostructures are characterized using UV–vis and HR-TEM spectroscopic study. Simulation of the UV–vis extinction spectra of our synthesized silver nanostructures has been carried out using discrete dipole approximation (DDA) method
Accelerating root system phenotyping of seedlings through a computer-assisted processing pipeline
Background: There are numerous systems and techniques to measure the growth of plant roots. However, phenotyping large numbers of plant roots for breeding and genetic analyses remains challenging. One major difficulty is to achieve high throughput and resolution at a reasonable cost per plant sample. Here we describe a cost-effective root phenotyping pipeline, on which we perform time and accuracy benchmarking to identify bottlenecks in such pipelines and strategies for their acceleration.
Results: Our root phenotyping pipeline was assembled with custom software and low cost material and equipment. Results show that sample preparation and handling of samples during screening are the most time consuming task in root phenotyping. Algorithms can be used to speed up the extraction of root traits from image data, but when applied to large numbers of images, there is a trade-off between time of processing the data and errors contained in the database.
Conclusions: Scaling-up root phenotyping to large numbers of genotypes will require not only automation of sample preparation and sample handling, but also efficient algorithms for error detection for more reliable replacement of manual interventions
- …