44 research outputs found

    Interior pathways of the North Atlantic meridional overturning circulation

    Get PDF
    To understand how our global climate will change in response to natural and anthropogenic forcing, it is essential to determine how quickly and by what pathways climate change signals are transported throughout the global ocean, a vast reservoir for heat and carbon dioxide. Labrador Sea Water (LSW), formed by open ocean convection in the subpolar North Atlantic, is a particularly sensitive indicator of climate change on interannual to decadal timescales. Hydrographic observations made anywhere along the western boundary of the North Atlantic reveal a core of LSW at intermediate depths advected southward within the Deep Western Boundary Current (DWBC). These observations have led to the widely held view that the DWBC is the dominant pathway for the export of LSW from its formation site in the northern North Atlantic towards the Equator. Here we show that most of the recently ventilated LSW entering the subtropics follows interior, not DWBC, pathways. The interior pathways are revealed by trajectories of subsurface RAFOS floats released during the period 2003-2005 that recorded once-daily temperature, pressure and acoustically determined position for two years, and by model-simulated 'e-floats' released in the subpolar DWBC. The evidence points to a few specific locations around the Grand Banks where LSW is most often injected into the interior. These results have implications for deep ocean ventilation and suggest that the interior subtropical gyre should not be ignored when considering the Atlantic meridional overturning circulation.Dissertatio

    Modelling mixing and circulation in subglacial Lake Vostok, Antarctica

    Get PDF
    Lake Vostok, isolated from direct exchange with the atmosphere by about 4 km of ice for millions of years, provides a unique environment. This inaccessibility raises the importance of numerical models to investigate the physical conditions within the lake. Using a three-dimensional numerical model and the best available geometry, we test different parameter settings to define a standard model configuration suitable for studying flow in this subglacial lake. From our model runs we find a baroclinic circulation within the lake that splits into three different parts: Along a topographic ridge in the northern part of Lake Vostok, bottom water masses are transported eastward, diverging away from the ridge. In the lakes surface layer, the flow in these two vertical overturning cells has opposite directions. In the southern part of the lake, where freezing occurs across about 3,500 km^2, two opposing gyres split the water column vertically. The general flow isstronger in the southern basin with horizontal velocities in the order of 1 mm/s. The strongest upwelling, found in the eastern part of this basin, is about 25 μm/s. We estimate the lower limit of the overturning timescale to be about 2.5 years vertically and 8.6 years horizontally. The basal mass loss of ice from the ice sheet floating on the lake is 5.6 mm/year (equivalent to a fresh water flux of 2.78 m^3/s, or a basal ice loss of 0.09 km^3/year). This imbalance indicates either a constant growth of the lake or its continuous (or periodical) discharge into a subglacial drainage system

    Variability of dense water formation in the Ross Sea

    Get PDF
    The paper presents results from a model study of the interannual variability of High Salinity Shelf Water (HSSW) properties in the Ross Sea.Salinity, potential temperature and volume of HSSW formed in the western Ross Sea show oscillatory behaviour at periods of 5-6 and 9 years superimposed on long-term fluctuations.While the shorter oscillations are induced by wind variability, variability on the scale of decades appears to be related to air temperature fluctuations.At least part of the strong decrease of HSSW salinities deduced from observations for the period 1963-2000 is shown to be an aliasing artefact due to an undersampling of the periodic signal.While sea ice formation is responsible for the yearly salinity increase that triggers the formation of High Salinity Shelf Water, interannual variability of net freezing rates hardly affects changes in the properties of the resulting water mass.Instead, results from model experiments indicate that the interannual variability of dense water characteristics is predominantly controlled by variations in the shelf inflow through a sub-surface salinity and a deep temperature signal.The origin of the variability of inflow characteristics to the Ross Sea continental shelf can be traced into the Amundsen and Bellingshausen Seas.The temperature anomalies are induced at the continental shelf break in the western Bellingshausen Sea by fluctuations of the meridional transport of Circumpolar Deep Water with the eastern cell of the Ross Gyre.Upwelling in the centre of this gyre carries the signal into the surface layer where it causes anomalies of brine release near the sea ice edge in the Amundsen Sea, which results in a sub-surface salinity anomaly.With the westward flowing coastal current, both the sub-surface salinity and deep temperature signals are advected onto the Ross Sea continental shelf.Convection carries the signal of salinity variability into the deep ocean, where it interacts with Modified Circumpolar Deep Water upwelled onto the continental shelf as the second source water mass of HSSW.Sea ice formation on the Ross Sea continental shelf thus drives the vertical propagation of the signal rather than determining the signal itself
    corecore