12,081 research outputs found

    Swarm dynamics and equilibria for a nonlocal aggregation model

    Get PDF
    We consider the aggregation equation ρt − ∇ · (ρ∇K ∗ ρ) = 0 in Rn, where the interaction potential K models short-range repulsion and long-range attraction. We study a family of interaction potentials for which the equilibria are of finite density and compact support. We show global well-posedness of solutions and investigate analytically and numerically the equilibria and their global stability. In particular, we consider a potential for which the corresponding equilibrium solutions are of uniform density inside a ball of Rn and zero outside. For such a potential, various explicit calculations can be carried out in detail. In one dimension we fully solve the temporal dynamics, and in two or higher dimensions we show the global stability of this steady state within the class of radially symmetric solutions. Finally, we solve the following restricted inverse problem: given a radially symmetric density ρ ̄ that is zero outside some ball of radius R and is polynomial inside the ball, construct an interaction potential K for which ρ̄ is the steady state solution of the corresponding aggregation equation. Throughout the paper, numerical simulations are used to motivate and validate the analytical results

    Introducing a framework to assess newly created questions with Natural Language Processing

    Full text link
    Statistical models such as those derived from Item Response Theory (IRT) enable the assessment of students on a specific subject, which can be useful for several purposes (e.g., learning path customization, drop-out prediction). However, the questions have to be assessed as well and, although it is possible to estimate with IRT the characteristics of questions that have already been answered by several students, this technique cannot be used on newly generated questions. In this paper, we propose a framework to train and evaluate models for estimating the difficulty and discrimination of newly created Multiple Choice Questions by extracting meaningful features from the text of the question and of the possible choices. We implement one model using this framework and test it on a real-world dataset provided by CloudAcademy, showing that it outperforms previously proposed models, reducing by 6.7% the RMSE for difficulty estimation and by 10.8% the RMSE for discrimination estimation. We also present the results of an ablation study performed to support our features choice and to show the effects of different characteristics of the questions' text on difficulty and discrimination.Comment: Accepted at the International Conference of Artificial Intelligence in Educatio

    Optimal Investment in the Development of Oil and Gas Field

    Full text link
    Let an oil and gas field consists of clusters in each of which an investor can launch at most one project. During the implementation of a particular project, all characteristics are known, including annual production volumes, necessary investment volumes, and profit. The total amount of investments that the investor spends on developing the field during the entire planning period we know. It is required to determine which projects to implement in each cluster so that, within the total amount of investments, the profit for the entire planning period is maximum. The problem under consideration is NP-hard. However, it is solved by dynamic programming with pseudopolynomial time complexity. Nevertheless, in practice, there are additional constraints that do not allow solving the problem with acceptable accuracy at a reasonable time. Such restrictions, in particular, are annual production volumes. In this paper, we considered only the upper constraints that are dictated by the pipeline capacity. For the investment optimization problem with such additional restrictions, we obtain qualitative results, propose an approximate algorithm, and investigate its properties. Based on the results of a numerical experiment, we conclude that the developed algorithm builds a solution close (in terms of the objective function) to the optimal one

    Inhibition of carcinogen induced c-Ha-ras and c-fos proto-oncogenes expression by dietary curcumin

    Get PDF
    BACKGROUND: We investigated the chemopreventive action of dietary curcumin on 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12,0-tetradecanoylphorbol-13-acetate (TPA)-promoted skin tumor formation in Swiss albino mice. Curcumin, a yellow coloring matter isolated from roots of Curcuma longa Linn, is a phenolic compound possessing antioxidant, free radical scavenger, and antiinflammatory properties. It has been shown by previously reported work that TPA-induced skin tumors were inhibited by topical application of curcumin, and curcumin has been shown to inhibit a variety of biological activities of TPA. Topical application of curcumin was reported to inhibit TPA-induced c-fos, c-jun and c-myc gene expression in mouse skin. This paper reports the effects of orally administered curcumin, which was consumed as a dietary component at concentrations of 0.2 % or 1 %, in ad libitum feeding. RESULTS: Animals in which tumors had been initiated with DMBA and promoted with TPA experienced significantly fewer tumors and less tumor volume if they ingested either 0.2% or 1% curcumin diets. Also, the dietary consumption of curcumin resulted in a significantly decreased expression of ras and fos proto-oncogenes in the tumorous skin, as measured by enhanced chemiluminesence Western blotting detection system (Amersham). CONCLUSIONS: Whereas earlier work demonstrated that topical application of curcumin to mouse skin inhibited TPA-induced expression of c-fos, c-jun and c-myc oncogenes, our results are the first to show that orally consumed curcumin significantly inhibited DMBA- and TPA-induced ras and fos gene expression in mouse skin

    Semimetallic behavior in Heusler-type Ru2TaAl and thermoelectric performance improved by off-stoichiometry

    Get PDF
    We report a study of the temperature-dependent electrical resistivity, Seebeck coefficient, thermal conductivity, specific heat, and Al27 nuclear magnetic resonance (NMR) in Heusler-type Ru2TaAl, to shed light on its semimetallic behavior. While the temperature dependence of the electrical resistivity exhibits semiconductorlike behavior, the analysis of low-temperature specific heat reveals a residual Fermi-level density of states (DOS). Both observations can be realized by means of a semimetallic scenario with the Fermi energy located in the pseudogap of the electronic DOS. The NMR Knight shift and spin-lattice relaxation rate show activated behavior at higher temperatures, attributing to the thermally excited carriers across a pseudogap in Ru2TaAl. From the first-principles band structure calculations, we further provide a clear picture that an indirect overlap between electron and hole pockets is responsible for the formation of a pseudogap in the vicinity of the Fermi level of Ru2TaAl. In addition, an effort for improving the thermoelectric performance of Ru2TaAl has been made by investigating the thermoelectric properties of Ru1.95Ta1.05Al. We found significant enhancements in the electrical conductivity and Seebeck coefficient and marked reduction in the thermal conductivity via the off-stoichiomet ric approach. This leads to an increase in the figure-of-merit ZT value from 6.1×10-4 in Ru2TaAl to 3.4×10-3 in Ru1.95Ta1.05Al at room temperature. In this respect, a further improvement of thermoelectric performance based on Ru2TaAl through other off-stoichiometric attempts is highly probable

    Towards Intelligent Lower Limb Prostheses with Activity Recognition

    Get PDF
    User’s volitional control of lower limb prostheses is still challenging task despite technological advancements. There is still a need for amputees to impose their will upon the prosthesis to drive in an accurate and interactive fashion. This study represents a brief review on control strategies using different sensor modalities for the purpose of phases/events detection and activity recognition. The preliminary work that is associated with middle-level control shows a simple and reliable method for event detection in real-time using a single inertial measurement unit. The outcome shows promising results

    Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution

    Full text link
    The standard approach to analyzing 16S tag sequence data, which relies on clustering reads by sequence similarity into Operational Taxonomic Units (OTUs), underexploits the accuracy of modern sequencing technology. We present a clustering-free approach to multi-sample Illumina datasets that can identify independent bacterial subpopulations regardless of the similarity of their 16S tag sequences. Using published data from a longitudinal time-series study of human tongue microbiota, we are able to resolve within standard 97% similarity OTUs up to 20 distinct subpopulations, all ecologically distinct but with 16S tags differing by as little as 1 nucleotide (99.2% similarity). A comparative analysis of oral communities of two cohabiting individuals reveals that most such subpopulations are shared between the two communities at 100% sequence identity, and that dynamical similarity between subpopulations in one host is strongly predictive of dynamical similarity between the same subpopulations in the other host. Our method can also be applied to samples collected in cross-sectional studies and can be used with the 454 sequencing platform. We discuss how the sub-OTU resolution of our approach can provide new insight into factors shaping community assembly.Comment: Updated to match the published version. 12 pages, 5 figures + supplement. Significantly revised for clarity, references added, results not change

    High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation

    Get PDF
    Transfer printing, a two-step process (i.e. picking up and printing) for heterogeneous integration, has been widely exploited for the fabrication of functional electronics system. To ensure a reliable process, strong adhesion for picking up and weak or no adhesion for printing are required. However, it is challenging to meet the requirements of switchable stamp adhesion. Here we introduce a simple, high fidelity process, namely tape transfer printing(TTP), enabled by chemically induced dramatic modulation in tape adhesive strength. We describe the working mechanism of the adhesion modulation that governs this process and demonstrate the method by high fidelity tape transfer printing several types of materials and devices, including Si pellets arrays, photodetector arrays, and electromyography (EMG) sensors, from their preparation substrates to various alien substrates. High fidelity tape transfer printing of components onto curvilinear surfaces is also illustrated

    Rapid EST isolation from chromosome 1R of rye

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To obtain important expressed sequence tags (ESTs) located on specific chromosomes is currently difficult. Construction of single-chromosome EST library could be an efficient strategy to isolate important ESTs located on specific chromosomes. In this research we developed a method to rapidly isolate ESTs from chromosome 1R of rye by combining the techniques of chromosome microdissection with hybrid specific amplification (HSA).</p> <p>Results</p> <p>Chromosome 1R was isolated by a glass needle and digested with proteinase K (PK). The DNA of chromosome 1R was amplified by two rounds of PCR using a degenerated oligonucleotide 6-MW sequence with a <it>Sau</it>3AI digestion site as the primer. The PCR product was digested with <it>Sau</it>3AI and linked with adaptor HSA1, then hybridized with the <it>Sau</it>3AI digested cDNA with adaptor HSA2 of rye leaves with and without salicylic acid (SA) treatment, respectively. The hybridized DNA fragments were recovered by the HSA method and cloned into pMD18-T vector. The cloned inserts were released by PCR using the partial sequences in HSA1 and HSA2 as the primers and then sequenced. Of the 94 ESTs obtained and analyzed, 6 were known sequences located on rye chromosome 1R or on homologous group 1 chromosomes of wheat; all of them were highly homologous with ESTs of wheat, barley and/or other plants in <it>Gramineae</it>, some of which were induced by abiotic or biotic stresses. Isolated in this research were 22 ESTs with unknown functions, probably representing some new genes on rye chromosome 1R.</p> <p>Conclusion</p> <p>We developed a new method to rapidly clone chromosome-specific ESTs from chromosome 1R of rye. The information reported here should be useful for cloning and investigating the new genes found on chromosome 1R.</p
    corecore