195 research outputs found
High-intensity interval training improves VO2peak, maximal lactate accumulation, time trial and competition performance in 9–11-year-old swimmers
Training volume in swimming is usually very high when compared to the relatively short competition time. High-intensity interval training (HIIT) has been demonstrated to improve performance in a relatively short training period. The main purpose of the present study was to examine the effects of a 5-week HIIT versus high-volume training (HVT) in 9–11-year-old swimmers on competition performance, 100 and 2,000 m time (T100 m and T2,000 m), VO2peak and rate of maximal lactate accumulation (Lacmax). In a 5-week crossover study, 26 competitive swimmers with a mean (SD) age of 11.5 ± 1.4 years performed a training period of HIIT and HVT. Competition (P < 0.01; effect size = 0.48) and T2,000 m (P = 0.04; effect size = 0.21) performance increased following HIIT. No changes were found in T100 m (P = 0.20). Lacmax increased following HIIT (P < 0.01; effect size = 0.43) and decreased after HVT (P < 0.01; effect size = 0.51). VO2peak increased following both interventions (P < 0.05; effect sizes = 0.46–0.57). The increases in competition performance, T2,000 m, Lacmax and VO2peak following HIIT were achieved in significantly less training time (~2 h/week)
Occupational therapy and return to work: a systematic literature review
<p>Abstract</p> <p>Background</p> <p>The primary aim of this review study was to gather evidence on the effectiveness in terms of return to work (RTW) of occupational therapy interventions (OTIs) in rehabilitation patients with non-congenital disorders. A secondary aim was to be able to select the most efficient OTI.</p> <p>Methods</p> <p>A systematic literature review of peer-reviewed papers was conducted using electronic databases (Cinahl, Cochrane Library, Ebsco, Medline (Pubmed), and PsycInfo). The search focussed on randomised controlled trials and cohort studies published in English from 1980 until September 2010. Scientific validity of the studies was assessed.</p> <p>Results</p> <p>Starting from 1532 papers with pertinent titles, six studies met the quality criteria. Results show systematic reviewing of OTIs on RTW was challenging due to varying populations, different outcome measures, and poor descriptions of methodology. There is evidence that OTIs as part of rehabilitation programs, increase RTW rates, although the methodological evidence of most studies is weak.</p> <p>Conclusions</p> <p>Analysis of the selected papers indicated that OTIs positively influence RTW; two studies described precisely what the content of their OTI was. In order to identify the added value of OTIs on RTW, studies with well-defined OT intervention protocols are necessary.</p
The Werner Syndrome Helicase/Exonuclease Processes Mobile D-Loops through Branch Migration and Degradation
RecQ DNA helicases are critical for preserving genome integrity. Of the five RecQ family members identified in humans, only the Werner syndrome protein (WRN) possesses exonuclease activity. Loss of WRN causes the progeroid disorder Werner syndrome which is marked by cancer predisposition. Cellular evidence indicates that WRN disrupts potentially deleterious intermediates in homologous recombination (HR) that arise in genomic and telomeric regions during DNA replication and repair. Precisely how the WRN biochemical activities process these structures is unknown, especially since the DNA unwinding activity is poorly processive. We generated biologically relevant mobile D-loops which mimic the initial DNA strand invasion step in HR to investigate whether WRN biochemical activities can disrupt this joint molecule. We show that WRN helicase alone can promote branch migration through an 84 base pair duplex region to completely displace the invading strand from the D-loop. However, substrate processing is altered in the presence of the WRN exonuclease activity which degrades the invading strand both prior to and after release from the D-loop. Furthermore, telomeric D-loops are more refractory to disruption by WRN, which has implications for tighter regulation of D-loop processing at telomeres. Finally, we show that WRN can recognize and initiate branch migration from both the 5′ and 3′ ends of the invading strand in the D-loops. These findings led us to propose a novel model for WRN D-loop disruption. Our biochemical results offer an explanation for the cellular studies that indicate both WRN activities function in processing HR intermediates
The Effect of High Glucocorticoid Administration and Food Restriction on Rodent Skeletal Muscle Mitochondrial Function and Protein Metabolism
Glucocorticoids levels are high in catabolic conditions but it is unclear how much of the catabolic effects are due to negative energy balance versus glucocorticoids and whether there are distinct effects on metabolism and functions of specific muscle proteins.We determined whether 14 days of high dose methylprednisolone (MPred, 4 mg/kg/d) Vs food restriction (FR, food intake matched to MPred) in rats had different effects on muscle mitochondrial function and protein fractional synthesis rates (FSR). Lower weight loss (15%) occurred in FR than in MPred (30%) rats, while a 15% increase occurred saline-treated Controls. The per cent muscle loss was significantly greater for MPred than FR. Mitochondrial protein FSR in MPred rats was lower in soleus (51 and 43%, respectively) and plantaris (25 and 55%) than in FR, while similar decline in protein FSR of the mixed, sarcoplasmic, and myosin heavy chain occurred. Mitochondrial enzymatic activity and ATP production were unchanged in soleus while in plantaris cytochrome c oxidase activity was lower in FR than Control, and ATP production rate with pyruvate + malate in MPred plantaris was 28% lower in MPred. Branched-chain amino acid catabolic enzyme activities were higher in both FR and MPred rats indicating enhanced amino acid oxidation capacity.MPred and FR had little impact on mitochondrial function but reduction in muscle protein synthesis occurred in MPred that could be explained on the basis of reduced food intake. A greater decline in proteolysis may explain lesser muscle loss in FR than in MPred rats
Vacationers Happier, but Most not Happier After a Holiday
The aim of this study was to obtain a greater insight into the association between vacations and happiness. We examined whether vacationers differ in happiness, compared to those not going on holiday, and if a holiday trip boosts post-trip happiness. These questions were addressed in a pre-test/post-test design study among 1,530 Dutch individuals. 974 vacationers answered questions about their happiness before and after a holiday trip. Vacationers reported a higher degree of pre-trip happiness, compared to non-vacationers, possibly because they are anticipating their holiday. Only a very relaxed holiday trip boosts vacationers’ happiness further after return. Generally, there is no difference between vacationers’ and non-vacationers’ post-trip happiness. The findings are explained in the light of set-point theory, need theory and comparison theory
Recommended from our members
What do parents perceive are the barriers and facilitators to accessing psychological treatment for mental health problems in children and adolescents? A systematic review of qualitative and quantitative studies
A minority of children and adolescents with mental health problems access treatment. The reasons for poor rates of treatment access are not well understood. As parents are a key gatekeeper to treatment access, it is important to establish parents’ views of barriers/facilitators to accessing treatment. The aims of this study are to synthesise findings from qualitative and quantitative studies that report parents’ perceptions of barriers/facilitators to accessing treatment for mental health problems in children/adolescents. A systematic review and narrative synthesis were conducted. Forty-four studies were included in the review and were assessed in detail. Parental perceived barriers/facilitators relating to (1) systemic/structural issues; (2) views and attitudes towards services and treatment; (3) knowledge and understanding of mental health problems and the help-seeking process; and (4) family circumstances were identified. Findings highlight avenues for improving access to child mental health services, including increased provision that is free to service users and flexible to their needs, with opportunities to develop trusting, supportive relationships with professionals. Furthermore, interventions are required to improve parents’ identification of mental health problems, reduce stigma for parents, and increase awareness of how to access services
Checkpoint Signaling, Base Excision Repair, and PARP Promote Survival of Colon Cancer Cells Treated with 5-Fluorodeoxyuridine but Not 5-Fluorouracil
The fluoropyrimidines 5-fluorouracil (5-FU) and FdUrd (5-fluorodeoxyuridine; floxuridine) are the backbone of chemotherapy regimens for colon cancer and other tumors. Despite their widespread use, it remains unclear how these agents kill tumor cells. Here, we have analyzed the checkpoint and DNA repair pathways that affect colon tumor responses to 5-FU and FdUrd. These studies demonstrate that both FdUrd and 5-FU activate the ATR and ATM checkpoint signaling pathways, indicating that they cause genotoxic damage. Notably, however, depletion of ATM or ATR does not sensitize colon cancer cells to 5-FU, whereas these checkpoint pathways promote the survival of cells treated with FdUrd, suggesting that FdUrd exerts cytotoxicity by disrupting DNA replication and/or inducing DNA damage, whereas 5-FU does not. We also found that disabling the base excision (BER) repair pathway by depleting XRCC1 or APE1 sensitized colon cancer cells to FdUrd but not 5-FU. Consistent with a role for the BER pathway, we show that small molecule poly(ADP-ribose) polymerase 1/2 (PARP) inhibitors, AZD2281 and ABT-888, remarkably sensitized both mismatch repair (MMR)-proficient and -deficient colon cancer cell lines to FdUrd but not to 5-FU. Taken together, these studies demonstrate that the roles of genotoxin-induced checkpoint signaling and DNA repair differ significantly for these agents and also suggest a novel approach to colon cancer therapy in which FdUrd is combined with a small molecule PARP inhibitor
- …