6 research outputs found

    The Use of PRV-Bartha to Define Premotor Inputs to Lumbar Motoneurons in the Neonatal Spinal Cord of the Mouse

    Get PDF
    The neonatal mouse has become a model system for studying the locomotor function of the lumbar spinal cord. However, information about the synaptic connectivity within the governing neural network remains scarce. A neurotropic pseudorabies virus (PRV) Bartha has been used to map neuronal connectivity in other parts of the nervous system, due to its ability to travel trans-neuronally. Its use in spinal circuits regulating locomotion has been limited and no study has defined the time course of labelling for neurons known to project monosynaptically to motoneurons.Here we investigated the ability of PRV Bartha, expressing green and/or red fluorescence, to label spinal neurons projecting monosynaptically to motoneurons of two principal hindlimb muscles, the tibialis anterior (TA) and gastrocnemius (GC). As revealed by combined immunocytochemistry and confocal microscopy, 24-32 h after the viral muscle injection the label was restricted to the motoneuron pool while at 32-40 h the fluorescence was seen in interneurons throughout the medial and lateral ventral grey matter. Two classes of ipsilateral interneurons known to project monosynaptically to motoneurons (Renshaw cells and cells of origin of C-terminals) were consistently labeled at 40 h post-injection but also a group in the ventral grey matter contralaterally. Our results suggest that the labeling of last order interneurons occurred 8-12 h after motoneuron labeling and we presume this is the time taken by the virus to cross one synapse, to travel retrogradely and to replicate in the labeled cells.The study establishes the time window for virally-labelling monosynaptic projections to lumbar motoneurons following viral injection into hindlimb muscles. Moreover, it provides a good foundation for intracellular targeting of the labeled neurons in future physiological studies and better understanding the functional organization of the lumbar neural networks

    Nitrate reductase transcript is expressed in the primary response of maize to environmental nitrate

    No full text
    The nitrate induction of NADH:nitrate reductase mRNA in maize roots, scutella and leaves was investigated in the presence and absence of inhibitors of protein synthesis. In the absence of inhibitors, nitrate treatment caused a fairly rapid (2 to 3 h) increase in the level of the nitrate reductase transcript in all tissues. When cytoplasmic protein synthesis was inhibited by cycloheximide, nitrate reductase mRNA was induced by nitrate in all tissues to levels equal to or greater than those found with nitrate treatment alone. Treatment of maize tissues with cycloheximide in the absence of nitrate had only a small effect on the accumulation of the nitrate reductase mRNA. Inhibition of organellar protein synthesis with chloramphenicol also had little or no effect on nitrate-induced nitrate reductase mRNA accumuiation in roots and scutella, but did appear to partially inhibit appearance of transcript in leaves. Excision of scutella in the absence of nitrate was sufficient to cause some accumulation of the nitrate reductase transcript. Since cytoplasmic protein synthesis was not required for expression of nitrate reductase transcripts, induction of these transcripts by nitrate is a primary response of maize to this environmental signal. Thus, it appears that the signal transduction system mediating this response is constitutively expressed in roots, scutella and leaves of maize. © 1992 Kluwer Academic Publishers
    corecore