29 research outputs found
Lunar exploration: opening a window into the history and evolution of the inner Solar System
The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth-Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date, and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth-Moon system, and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap
Wind anisotropies and GRB progenitors
We study the effect of wind anisotropies on the stellar evolution leading to
collapsars. Rotating models of a 60 M star with on the ZAMS, accounting for shellular rotation and a magnetic
field, with and without wind anisotropies, are computed at =0.002 until the
end of the core He-burning phase. Only the models accounting for the effects of
the wind anisotropies retain enough angular momentum in their core to produce a
Gamma Ray Burst (GRB). The chemical composition is such that a type Ic
supernova event occurs. Wind anisotropies appear to be a key physical
ingredient in the scenario leading to long GRBs.Comment: 5 pages, 4 figures, accepted for publication in A&A Lette
Highly silicic compositions on the Moon.
Using data from the Diviner Lunar Radiometer Experiment, we show that four regions of the Moon previously described as "red spots" exhibit mid-infrared spectra best explained by quartz, silica-rich glass, or alkali feldspar. These lithologies are consistent with evolved rocks similar to lunar granites in the Apollo samples. The spectral character of these spots is distinct from surrounding mare and highlands material and from regions composed of pure plagioclase feldspar. The variety of landforms associated with the silicic spectral character suggests that both extrusive and intrusive silicic magmatism occurred on the Moon. Basaltic underplating is the preferred mechanism for silicic magma generation, leading to the formation of extrusive landforms. This mechanism or silicate liquid immiscibility could lead to the formation of intrusive bodies