6 research outputs found

    The uronic acid content of coccolith-associated polysaccharides provides an insight into coccolithogenesis and past climate

    No full text
    Unicellular phytoplanktonic algae (coccolithophores) are amongst the most prolific producers of calcium carbonate on the planet, with a production of ~10^26 coccoliths/year. During their lith formation, coccolithophores mainly employ coccolith-associated polysaccharides (CAPs) for the regulation of crystal nucleation and growth. These macromolecules interact with the intracellular calcifying compartment (coccolith vesicle) through the charged carboxyl groups of their uronic acid residues. Here we report the isolation of CAPs from modern day coccolithophores and their prehistoric predecessors and we demonstrate that their uronic acid content (UAC) offers a species-specific signature. We also show that there is a correlation between the UAC of CAPs and the internal saturation state of the coccolith vesicle which, for most geologically abundant species, is inextricably linked to carbon availability. These findings suggest that the UAC of CAPs reports on the adaptation of coccolithogenesis to environmental changes and is a marker for the estimation of past pCO2 concentrations

    The role of Rubisco kinetics and pyrenoid morphology in shaping the CCM of haptophyte microalgae

    No full text
    The haptophyte algae are a cosmopolitan group of primary producers that contribute significantly to the marine carbon cycle and play a major role in paleo-climate studies. Despite their global importance, little is known about carbon assimilation in haptophytes, in particular the kinetics of their Form 1D CO2-fixing enzyme, Rubisco. Here we examine Rubisco properties of three haptophytes with a range of pyrenoid morphologies (Pleurochrysis carterae, Tisochrysis lutea, and Pavlova lutheri) and the diatom Phaeodactylum tricornutum that exhibit contrasting sensitivities to the trade-offs between substrate affinity (Km) and turnover rate (kcat) for both CO2 and O2. The pyrenoid-containing T. lutea and P. carterae showed lower Rubisco content and carboxylation properties (KC and kCcat) comparable with those of Form 1D-containing non-green algae. In contrast, the pyrenoid-lacking P. lutheri produced Rubisco in 3-fold higher amounts, and displayed a Form 1B Rubisco kCcat–KC relationship and increased CO2/O2 specificity that, when modeled in the context of a C3 leaf, supported equivalent rates of photosynthesis to higher plant Rubisco. Correlation between the differing Rubisco properties and the occurrence and localization of pyrenoids with differing intracellular CO2:O2 microenvironments has probably influenced the divergent evolution of Form 1B and 1D Rubisco kinetics

    Polymorph selectivity of coccolith-associated polysaccharides from gephyrocapsa oceanica on calcium carbonate formation in vitro

    No full text
    Coccolith‐associated polysaccharides (CAPs) are thought to be a key part of the biomineralization process in coccolithophores; however, their role is not fully understood. Two different systems that promote different polymorphs of calcium carbonate are used to show the effect of CAPs on nucleation and polymorph selection in vitro. Using a combination of time‐resolved cryo‐transmission electron microscopy and scanning electron microscopy, the mechanisms of calcite nucleation and growth in the presence of the intracrystalline fraction are examined containing CAPs extracted from coccoliths from Gephyrocapsa oceanica and Emiliania huxleyi, two closely related coccolithophore species. The CAPs extracted from G. oceanica are shown to promote calcite nucleation in vitro, even under conditions favoring the kinetic products of calcium carbonate, vaterite, and aragonite. This is not the case with CAPs extracted from E. huxleyi, suggesting that the functional role of CAPs in vivo may be different between the two species. Additionally, high‐resolution synchrotron powder X‐ray diffraction has revealed that the polysaccharide is located between grain boundaries of both calcite produced in the presence of the CAPs in vitro and biogenic calcite, rather than within the crystal lattice

    Carbon fixation in diatoms

    No full text
    Diatoms are unicellular photoautotrophic algae and very successful primary producers in the oceans. Their high primary productivity is probably sustained by their high adaptability and a uniquely arranged metabolism. Diatom belongs to the Chromista, a large eukaryotic group, which has evolved by multiple endosymbiotic steps. As a result, diatoms possess a plastids with four membranes together with complicated translocation systems to transport proteins and metabolites including inorganic substances into and out of the plastids. In addition to the occurrence of potential plasma-membrane transporters, there are numerous carbonic anhydrases (CAs) within the matrix of the layered plastidic membranes, strongly suggesting large interconversion activity between CO2 and HCO3 − within the chloroplast envelope as a part of a CO2-concentrating mechanism (CCM). In diatoms also the Calvin cycle and its adjacent metabolism reveal unique characteristics as, for instance, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) activase, the plastidic sedoheptulose-1,7-bisphosphatase (SBPase), and the plastidic oxidative pentose phosphate pathway (OPP) are absent. Furthermore, the Calvin cycle metabolism in diatoms is not under the strict redox control by the thioredoxin (Trx) system. Instead, a CO2-supplying system in the pyrenoid shows CA activities which are probably regulated by chloroplastic Trxs. Pyrenoidal CAs are also regulated on the transcriptional level by CO2 concentrations via cAMP as a second messenger, suggesting an intense control system of CO2 acquisition in response to CO2 availability. The photorespiratory carbon oxidation cycle (PCOC) is the major pathway to recycle phosphoglycolate in diatoms although this process might not be involved in recycling of 3-phosphoglycerate but instead produces glycine and serine. In this review we focus on recent experimental data together with supportive genome information of CO2 acquisition and fixation systems primarily in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana

    Common surgical procedures in pilonidal sinus disease: A meta-analysis, merged data analysis, and comprehensive study on recurrence

    Get PDF
    Abstract We systematically searched available databases. We reviewed 6,143 studies published from 1833 to 2017. Reports in English, French, German, Italian, and Spanish were considered, as were publications in other languages if definitive treatment and recurrence at specific follow-up times were described in an English abstract. We assessed data in the manner of a meta-analysis of RCTs; further we assessed non-RCTs in the manner of a merged data analysis. In the RCT analysis including 11,730 patients, Limberg & Dufourmentel operations were associated with low recurrence of 0.6% (95%CI 0.3–0.9%) 12 months and 1.8% (95%CI 1.1–2.4%) respectively 24 months postoperatively. Analysing 89,583 patients from RCTs and non-RCTs, the Karydakis & Bascom approaches were associated with recurrence of only 0.2% (95%CI 0.1–0.3%) 12 months and 0.6% (95%CI 0.5–0.8%) 24 months postoperatively. Primary midline closure exhibited long-term recurrence up to 67.9% (95%CI 53.3–82.4%) 240 months post-surgery. For most procedures, only a few RCTs without long term follow up data exist, but substitute data from numerous non-RCTs are available. Recurrence in PSD is highly dependent on surgical procedure and by follow-up time; both must be considered when drawing conclusions regarding the efficacy of a procedure
    corecore