24 research outputs found

    Sensory systems in sawfishes. 1. The ampullae of Lorenzini

    No full text
    The distribution and density of the ampullary electroreceptors in the skin of elasmobranchs are influenced by the phylogeny and ecology of a species. Sensory maps were created for 4 species of pristid sawfish. Their ampullary pores were separated into pore fields based on their innervation and cluster formation. Ventrally, ampullary pores are located in 6 areas (5 in Pristis microdon), covering the rostrum and head to the gills. Dorsally, pores are located in 4 areas (3 in P. microdon), which cover the rostrum, head and may extend slightly onto the pectoral fins. In all species, the highest number of pores is found on the dorsal and ventral sides of the rostrum. The high densities of pores along the rostrum combined with the low densities around the mouth could indicate that sawfish use their rostrum to stun their prey before ingesting it, but this hypothesis remains to be tested. The directions of ampullary canals on the ventral side of the rostrum are species specific. P. microdon possesses the highest number of ampullary pores, which indicates that amongst the study species this species is an electroreception specialist. As such, juvenile P. microdon inhabit low-visibility freshwater habitats

    Comparison of the lateral line and ampullary systems of two species of shovelnose ray

    No full text
    The anatomical characteristics of the mechanoreceptive lateral line system and electrosensory ampullae of Lorenzini of Rhinobatos typus and Aptychotrema rostrata are compared. The spatial distribution of somatic pores of both sensory systems is quite similar, as lateral line canals are bordered by electrosensory pore fields. Lateral line canals form a sub-epidermal, bilaterally symmetrical net on the dorsal and ventral surfaces; canals contain a nearly continuous row of sensory neuromasts along their length and are either non-pored or pored. Pored canals are connected to the surface through a single terminal pore or additionally possess numerous tubules along their length. On the dorsal surface of R. typus, all canals of the lateral line occur in the same locations as those of A. rostrata. Tubules branching off the lateral line canals of R. typus are ramified, which contrasts with the straight tubules of A. rostrata. The ventral prenasal lateral line canals of R. typus are pored and possess branched tubules in contrast to the non-pored straight canals in A. rostrata. Pores of the ampullae of Lorenzini are restricted to the cephalic region of the disk, extending only slightly onto the pectoral fins in both species. Ampullary canals penetrate subdermally and are detached from the dermis. Ampullae occur clustered together, and can be surrounded by capsules of connective tissue. We divided the somatic pores of the ampullae of Lorenzini of R. typus into 12 pore fields (10 in A. rostrata), corresponding to innervation and cluster formation. The total number of ampullary pores found on the ventral skin surface of R. typus is approximately six times higher (four times higher in A. rostrata) than dorsally. Pores are concentrated around the mouth, in the abdominal area between the gills and along the rostral cartilage. The ampullae of both species of shovelnose ray are multi-alveolate macroampullae, sensu Andres and von During (1988). Both the pore patterns and the distribution of the ampullary clusters in R. typus differ from A. rostrata, although a basic pore distribution pattern is conserved

    Distribution and morphology of the ampullary organs of the estuarine long-tailed catfish, Euristhmus lepturus (Plotosidae, Siluriformes)

    No full text
    Ampullary organs of Euristhmus lepturus occur in high densities along the head and in four parallel pathways along the trunk of the body. Large ampullary pores (125–130 μm) are easily distinguishable from other sensory epithelial pores due to the differences in size and the presence of a collar-like structure. Simple, singular ampullary organs of the head region consist of an ampullary pore connected to a long canal with a diameter of 115–175 μm before terminating as a simple ampulla with an external diameter of 390–480 μm. The ampullary canal is composed of 1–2 layers of flattened squamous epithelial cells, the basement membrane and an interlocking collagen sheath. The innermost cells lining the canal wall are adjoined via tight junctions and numerous desmosomes, as are those of the receptor and supportive cells. Canal wall tissue gives rise to a sensory epithelium containing between 242 and 285 total receptor cells, with an average diameter of 11.7 ± 5.3 μm, intermixed with medially nucleated supportive cells. Each receptor cell (21.38 ± 4.41 μm, height) has an apically positioned nucleus and a luminal surface covered with numerous microvilli. Neural terminals abut the basal region of receptor cells opposite multiple presynaptic bodies and dense mitochondria. Supportive cells extend from the ampullary lumen to the basement membrane, which is adjacent to the complex system of collagen fibres
    corecore