46 research outputs found

    BIM mediates synergistic killing of B-cell acute lymphoblastic leukemia cells by BCL-2 and MEK inhibitors

    Get PDF
    B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive hematological disease that kills ~50% of adult patients. With the exception of some BCR-ABL1(+) patients who benefit from tyrosine kinase inhibitors, there are no effective targeted therapies for adult B-ALL patients and chemotherapy remains first-line therapy despite adverse side effects and poor efficacy. We show that, although the MEK/ERK pathway is activated in B-ALL cells driven by different oncogenes, MEK inhibition does not suppress B-ALL cell growth. However, MEK inhibition synergized with BCL-2/BCL-XL family inhibitors to suppress proliferation and induce apoptosis in B-ALL cells. We show that this synergism is mediated by the pro-apoptotic factor BIM, which is dephosphorylated as a result of MEK inhibition, allowing it to bind to and neutralize MCL-1, thereby enhancing BCL-2/BCL-XL inhibitor-induced cell death. This cooperative effect is observed in B-ALL cells driven by a range of genetic abnormalities and therefore has significant therapeutic potential

    HIV Protease Inhibitors Sensitize Human Head and Neck Squamous Carcinoma Cells to Radiation by Activating Endoplasmic Reticulum Stress

    Get PDF
    Background Human head and neck squamous cell carcinoma (HNSCC) is the sixth most malignant cancer worldwide. Despite significant advances in the delivery of treatment and surgical reconstruction, there is no significant improvement of mortality rates for this disease in the past decades. Radiotherapy is the core component of the clinical combinational therapies for HNSCC. However, the tumor cells have a tendency to develop radiation resistance, which is a major barrier to effective treatment. HIV protease inhibitors (HIV PIs) have been reported with radiosensitizing activities in HNSCC cells, but the underlying cellular/molecular mechanisms remain unclear. Our previous study has shown that HIV PIs induce cell apoptosis via activation of endoplasmic reticulum (ER) stress. The aim of this study was to examine the role of ER stress in HIV PI-induced radiosensitivity in human HNSCC. Methodology and Principal Findings HNSCC cell lines, SQ20B and FaDu, and the most commonly used HIV PIs, lopinavir and ritonavir (L/R), were used in this study. Clonogenic assay was used to assess the radiosensitivity. Cell viability, apoptosis and cell cycle were analyzed using Cellometer Vision CBA. The mRNA and protein levels of ER stress-related genes (eIF2α, CHOP, ATF-4, and XBP-1), as well as cell cycle related protein, cyclin D1, were detected by real time RT-PCR and Western blot analysis, respectively. The results demonstrated that L/R dose-dependently sensitized HNSCC cells to irradiation and inhibited cell growth. L/R-induced activation of ER stress was correlated to down-regulation of cyclin D1 expression and cell cycle arrest under G0/G1 phase. Conclusion and Significance HIV PIs sensitize HNSCC cells to radiotherapy by activation of ER stress and induction of cell cycle arrest. Our results provided evidence that HIV PIs can be potentially used in combination with radiation in the treatment of HNSCC

    Pharmacokinetic Optimization of Everolimus Dosing in Oncology : A Randomized Crossover Trial

    Get PDF
    BACKGROUND: The mammalian target of rapamycin (mTOR) inhibitor everolimus is used in the treatment of breast cancer, neuroendocrine tumors, and renal cancer. The approved 10 mg once-daily dose is associated with considerable adverse effects and it has been suggested that these are associated with the maximum concentration (Cmax) of everolimus. Twice-daily dosing might be an alternative strategy with improved tolerability; however, a direct pharmacokinetic comparison of 10 mg once-daily with 5 mg twice-daily dosing is lacking. METHODS: We performed a prospective, randomized, pharmacokinetic, crossover trial comparing everolimus 10 mg once daily with 5 mg twice daily. Patients received the first dose schedule for 2 weeks and then switched to the alternative regimen for 2 weeks. Pharmacokinetic sampling was performed on days 14 and 28. RESULTS: Eleven patients were included in the study, of whom 10 were evaluable for pharmacokinetic analysis. On the 10 mg once-daily schedule, Cmax, minimum concentration (Cmin), and area under the concentration-time curve from time zero to 24 h (AUC24) were 61.5 ng/mL [mean percentage coefficient of variation (CV%) 29.6], 9.6 ng/mL (CV% 35.0), and 435 ng h/mL (CV% 28.1), respectively. Switching to the 5 mg twice-daily schedule resulted in a reduction of Cmaxto 40.3 ng/mL (CV% 46.6) (p = 0.013), while maintaining AUC24at 436 ng h/mL (CV% 34.8) (p = 0.952). Cminincreased to 13.7 ng/mL (CV% 53.9) (p = 0.018). The overall reduction in Cmaxwas 21.2 ng/mL, or 32.7%. The Cmax/Cminratio was reduced from 6.44 (CV% 36.2) to 3.18 (CV% 35.5) (p < 0.001). CONCLUSIONS: We demonstrated that switching from a once-daily to a twice-daily everolimus dose schedule reduces Cmaxwithout negatively impacting Cminor AUC24. These results merit further investigation of the twice-daily schedule in an effort to reduce everolimus toxicity while maintaining treatment efficacy. REGISTRATION: This trial was registered in the EurdaCT database (2014-004833-25) and the Netherlands Trial Registry (NTR4908)
    corecore