38 research outputs found
Safety and Immunogenicity of an HIV Adenoviral Vector Boost after DNA Plasmid Vaccine Prime by Route of Administration: A Randomized Clinical Trial
In the development of HIV vaccines, improving immunogenicity while maintaining safety is critical. Route of administration can be an important factor.This multicenter, open-label, randomized trial, HVTN 069, compared routes of administration on safety and immunogenicity of a DNA vaccine prime given intramuscularly at 0, 1 and 2 months and a recombinant replication-defective adenovirus type 5 (rAd5) vaccine boost given at 6 months by intramuscular (IM), intradermal (ID), or subcutaneous (SC) route. Randomization was computer-generated by a central data management center; participants and staff were not blinded to group assignment. The outcomes were vaccine reactogenicity and humoral and cellular immunogenicity. Ninety healthy, HIV-1 uninfected adults in the US and Peru, aged 18-50 were enrolled and randomized. Due to the results of the Step Study, injections with rAd5 vaccine were halted; thus 61 received the booster dose of rAd5 vaccine (IM: 20; ID:21; SC:20). After the rAd5 boost, significant differences by study arm were found in severity of headache, pain and erythema/induration. Immune responses (binding and neutralizing antibodies, IFN-γ ELISpot HIV-specific responses and CD4+ and CD8+ T-cell responses by ICS) at four weeks after the rAd5 booster were not significantly different by administration route of the rAd5 vaccine boost (Binding antibody responses: IM: 66.7%; ID: 70.0%; SC: 77.8%; neutralizing antibody responses: IM: 11.1%; ID: 0.0%; SC 16.7%; ELISpot responses: IM: 46.7%; ID: 35.3%; SC: 44.4%; CD4+ T-cell responses: IM: 29.4%; ID: 20.0%; SC: 35.3%; CD8+ T-cell responses: IM: 29.4%; ID: 16.7%; SC: 50.0%.)This study was limited by the reduced sample size. The higher frequency of local reactions after ID and SC administration and the lack of sufficient evidence to show that there were any differences in immunogenicity by route of administration do not support changing route of administration for the rAd5 boost.ClinicalTrials.gov NCT00384787
Antioxidant therapies in COPD
Oxidative stress is an important feature in the pathogenesis of COPD. Targeting oxidative stress with antioxidants or boosting the endogenous levels of antioxidants is likely to be beneficial in the treatment of COPD. Antioxidant agents such as thiol molecules (glutathione and mucolytic drugs, such as N-acetyl-L-cysteine and N-acystelyn), dietary polyphenols (curcumin, resveratrol, green tea, catechins/quercetin), erdosteine, and carbocysteine lysine salt, all have been reported to control nuclear factor-kappaB (NF-κ B) activation, regulation of glutathione biosynthesis genes, chromatin remodeling, and hence inflammatory gene expression. Specific spin traps such as α-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (ECSOD mimetic), porphyrins (AEOL 10150 and AEOL 10113), and a superoxide dismutase mimetic M40419 have also been reported to inhibit cigarette smoke-induced inflammatory responses in vivo. Since a variety of oxidants, free radicals, and aldehydes are implicated in the pathogenesis of COPD, it is possible that therapeutic administration of multiple antioxidants will be effective in the treatment of COPD. Various approaches to enhance lung antioxidant capacity and clinical trials of antioxidant compounds in COPD are discussed