20 research outputs found

    The Effect of the CO32- to Ca2+ Ion activity ratio on calcite precipitation kinetics and Sr2+ partitioning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A proposed strategy for immobilizing trace metals in the subsurface is to stimulate calcium carbonate precipitation and incorporate contaminants by co-precipitation. Such an approach will require injecting chemical amendments into the subsurface to generate supersaturated conditions that promote mineral precipitation. However, the formation of reactant mixing zones will create gradients in both the saturation state and ion activity ratios (i.e., <inline-formula><m:math name="1467-4866-13-1-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:msub><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mi>C</m:mi><m:msup><m:mrow><m:msub><m:mrow><m:mi>O</m:mi></m:mrow><m:mrow><m:mn>3</m:mn></m:mrow></m:msub></m:mrow><m:mrow><m:mn>2</m:mn><m:mo class="MathClass-bin">-</m:mo></m:mrow></m:msup></m:mrow></m:msub><m:mo class="MathClass-bin">/</m:mo><m:msub><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mi>C</m:mi><m:msup><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mn>2</m:mn><m:mo class="MathClass-bin">+</m:mo></m:mrow></m:msup></m:mrow></m:msub></m:math></inline-formula>). To better understand the effect of ion activity ratios on CaCO<sub>3 </sub>precipitation kinetics and Sr<sup>2+ </sup>co-precipitation, experiments were conducted under constant composition conditions where the supersaturation state (Ω) for calcite was held constant at 9.4, but the ion activity ratio <inline-formula><m:math name="1467-4866-13-1-i2" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:mrow><m:mo class="MathClass-open">(</m:mo><m:mrow><m:mi>r</m:mi><m:mo class="MathClass-rel">=</m:mo><m:msub><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mi>C</m:mi><m:msup><m:mrow><m:msub><m:mrow><m:mi>O</m:mi></m:mrow><m:mrow><m:mn>3</m:mn></m:mrow></m:msub></m:mrow><m:mrow><m:mn>2</m:mn><m:mo class="MathClass-bin">-</m:mo></m:mrow></m:msup></m:mrow></m:msub><m:mo class="MathClass-bin">/</m:mo><m:msub><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mi>C</m:mi><m:msup><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mn>2</m:mn><m:mo class="MathClass-bin">+</m:mo></m:mrow></m:msup></m:mrow></m:msub></m:mrow><m:mo class="MathClass-close">)</m:mo></m:mrow></m:math></inline-formula> was varied between 0.0032 and 4.15.</p> <p>Results</p> <p>Calcite was the only phase observed, by XRD, at the end of the experiments. Precipitation rates increased from 41.3 ± 3.4 μmol m<sup>-2 </sup>min<sup>-1 </sup>at <it>r = </it>0.0315 to a maximum rate of 74.5 ± 4.8 μmol m<sup>-2 </sup>min<sup>-1 </sup>at <it>r = </it>0.306 followed by a decrease to 46.3 ± 9.6 μmol m<sup>-2 </sup>min<sup>-1 </sup>at <it>r </it>= 1.822. The trend was simulated using a simple mass transfer model for solute uptake at the calcite surface. However, precipitation rates at fixed saturation states also evolved with time. Precipitation rates accelerated for low <it>r </it>values but slowed for high <it>r </it>values. These trends may be related to changes in effective reactive surface area. The <inline-formula><m:math xmlns:m="http://www.w3.org/1998/Math/MathML" name="1467-4866-13-1-i1"><m:msub><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mi>C</m:mi><m:msup><m:mrow><m:msub><m:mrow><m:mi>O</m:mi></m:mrow><m:mrow><m:mn>3</m:mn></m:mrow></m:msub></m:mrow><m:mrow><m:mn>2</m:mn><m:mo class="MathClass-bin">-</m:mo></m:mrow></m:msup></m:mrow></m:msub><m:mo class="MathClass-bin">/</m:mo><m:msub><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mi>C</m:mi><m:msup><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mn>2</m:mn><m:mo class="MathClass-bin">+</m:mo></m:mrow></m:msup></m:mrow></m:msub></m:math></inline-formula> ratios did not affect the distribution coefficient for Sr in calcite (D<sup>P</sup><sub>Sr</sub><sup>2+</sup>), apart from the indirect effect associated with the established positive correlation between D<sup>P</sup><sub>Sr</sub><sup>2+ </sup>and calcite precipitation rate.</p> <p>Conclusion</p> <p>At a constant supersaturation state (Ω = 9.4), varying the ion activity ratio affects the calcite precipitation rate. This behavior is not predicted by affinity-based rate models. Furthermore, at the highest ion ratio tested, no precipitation was observed, while at the lowest ion ratio precipitation occurred immediately and valid rate measurements could not be made. The maximum measured precipitation rate was 2-fold greater than the minima, and occurred at a carbonate to calcium ion activity ratio of 0.306. These findings have implications for predicting the progress and cost of remediation operations involving enhanced calcite precipitation where mineral precipitation rates, and the spatial/temporal distribution of those rates, can have significant impacts on the mobility of contaminants.</p

    Fate and transport of metals in H<sub>2</sub>S-rich waters at a treatment wetland

    Get PDF
    <p/> <p>The aqueous geochemistry of Zn, Cu, Cd, Fe, Mn and As is discussed within the context of an anaerobic treatment wetland in Butte, Montana. The water being treated had a circum-neutral pH with high concentrations of trace metals and sulfate. Reducing conditions in the wetland substrate promoted bacterial sulfate reduction (BSR) and precipitation of dissolved metal as sulfide minerals. ZnS was the most common sulfide phase found, and consisted of framboidal clusters of individual spheres with diameters in the submicron range. Some of the ZnS particles passed through the subsurface flow, anaerobic cells in suspended form. The concentration of "dissolved" trace metals (passing through a 0.45 μm filter) was monitored as a function of H<sub>2</sub>S concentration, and compared to predicted solubilities based on experimental studies of aqueous metal complexation with dissolved sulfide. Whereas the theoretical predictions produce "U-shaped" solubility curves as a function of H<sub>2</sub>S, the field data show a flat dependence of metal concentration on H<sub>2</sub>S. Observed metal concentrations for Zn, Cu and Cd were greater than the predicted values, particularly at low H<sub>2</sub>S concentration, whereas Mn and As were undersaturated with their respective metal sulfides. Results from this study show that water treatment facilities employing BSR have the potential to mobilize arsenic out of mineral substrates at levels that may exceed regulatory criteria. Dissolved iron was close to equilibrium saturation with amorphous FeS at the higher range of sulfide concentrations observed (>0.1 mmol H<sub>2</sub>S), but was more likely constrained by goethite at lower H<sub>2</sub>S levels. Inconsistencies between our field results and theoretical predictions may be due to several problems, including: (i) a lack of understanding of the form, valence, and thermodynamic stability of poorly crystalline metal sulfide precipitates; (ii) the possible influence of metal sulfide colloids imparting an erroneously high "dissolved" metal concentration; (iii) inaccurate or incomplete thermodynamic data for aqueous metal complexes at the conditions of the treatment facility; and (iv) difficulties in accurately measuring low concentrations of dissolved sulfide in the field.</p
    corecore