14 research outputs found

    Clinicopathological Significance and Prognostic Value of DNA Methyltransferase 1, 3a, and 3b Expressions in Sporadic Epithelial Ovarian Cancer

    Get PDF
    Altered DNA methylation of tumor suppressor gene promoters plays a role in human carcinogenesis and DNA methyltransferases (DNMTs) are responsible for it. This study aimed to determine aberrant expression of DNMT1, DNMT3a, and DNMT3b in benign and malignant ovarian tumor tissues for their association with clinicopathological significance and prognostic value. A total of 142 ovarian cancers and 44 benign ovarian tumors were recruited for immunohistochemical analysis of their expression. The data showed that expression of DNMT1, DNMT3a, and DNMT3b was observed in 76 (53.5%), 92 (64.8%) and 79 (55.6%) of 142 cases of ovarian cancer tissues, respectively. Of the serious tumors, DNMT3a protein expression was significantly higher than that in benign tumor samples (P = 0.001); DNMT3b was marginally significant down regulated in ovarian cancers compared to that of the benign tumors (P = 0.054); DNMT1 expression has no statistical difference between ovarian cancers and benign tumor tissues (P = 0.837). Of the mucious tumors, the expression of DNMT3a, DNMT3b, and DNMT1 was not different between malignant and benign tumors. Moreover, DNMT1 expression was associated with DNMT3b expression (P = 0.020, r = 0.195). DNMT1 expression was associated with age of the patients, menopause status, and tumor localization, while DNMT3a expression was associated with histological types and serum CA125 levels and DNMT3b expression was associated with lymph node metastasis. In addition, patients with DNMT1 or DNMT3b expression had a trend of better survival than those with negative expression. Co-expression of DNMT1 and DNMT3b was significantly associated with better overall survival (P = 0.014). The data from this study provided the first evidence for differential expression of DNMTs proteins in ovarian cancer tissues and their associations with clinicopathological and survival data in sporadic ovarian cancer patients

    Epigenetics of human cutaneous melanoma: setting the stage for new therapeutic strategies

    Get PDF
    Cutaneous melanoma is a very aggressive neoplasia of melanocytic origin with constantly growing incidence and mortality rates world-wide. Epigenetic modifications (i.e., alterations of genomic DNA methylation patterns, of post-translational modifications of histones, and of microRNA profiles) have been recently identified as playing an important role in melanoma development and progression by affecting key cellular pathways such as cell cycle regulation, cell signalling, differentiation, DNA repair, apoptosis, invasion and immune recognition. In this scenario, pharmacologic inhibition of DNA methyltransferases and/or of histone deacetylases were demonstrated to efficiently restore the expression of aberrantly-silenced genes, thus re-establishing pathway functions. In light of the pleiotropic activities of epigenetic drugs, their use alone or in combination therapies is being strongly suggested, and a particular clinical benefit might be expected from their synergistic activities with chemo-, radio-, and immuno-therapeutic approaches in melanoma patients. On this path, an important improvement would possibly derive from the development of new generation epigenetic drugs characterized by much reduced systemic toxicities, higher bioavailability, and more specific epigenetic effects

    Epigenetic modulators as therapeutic targets in prostate cancer

    Get PDF
    Prostate cancer is one of the most common non-cutaneous malignancies among men worldwide. Epigenetic aberrations, including changes in DNA methylation patterns and/or histone modifications, are key drivers of prostate carcinogenesis. These epigenetic defects might be due to deregulated function and/or expression of the epigenetic machinery, affecting the expression of several important genes. Remarkably, epigenetic modifications are reversible and numerous compounds that target the epigenetic enzymes and regulatory proteins were reported to be effective in cancer growth control. In fact, some of these drugs are already being tested in clinical trials. This review discusses the most important epigenetic alterations in prostate cancer, highlighting the role of epigenetic modulating compounds in pre-clinical and clinical trials as potential therapeutic agents for prostate cancer management.info:eu-repo/semantics/publishedVersio

    Ruxolitinib therapy followed by reduced-intensity conditioning for hematopoietic cell transplantation for myelofibrosis: Myeloproliferative Disorders Research Consortium 114 study

    No full text
    We evaluated the feasibility of ruxolitinib therapy followed by a reduced-intensity conditioning (RIC) regimen for patients with myelofibrosis (MF) undergoing transplantation in a 2-stage Simon phase II trial. The aims were to decrease the incidence of graft failure (GF) and nonrelapse mortality (NRM) compared with data from the previous Myeloproliferative Disorders Research Consortium 101 Study. The plan was to enroll 11 patients each in related donor (RD) and unrelated donor (URD) arms, with trial termination if ≥3 failures (GF or death by day +100 post-transplant) occurred in the RD arm or ≥6 failures occurred in the URD. A total of 21 patients were enrolled, including 7 in the RD arm and 14 in the URD arm. The RD arm did not meet the predetermined criteria for proceeding to stage II. Although the URD arm met the criteria for stage II, the study was terminated owing to poor accrual and a significant number of failures. In all 19 transplant recipients, ruxolitinib was tapered successfully without significant side effects, and 9 patients (47%) had a significant decrease in symptom burden. The cumulative incidences of GF, NRM, acute graft-versus-host disease (GVHD), and chronic GVHD at 24 months were 16%, 28%, 64%, and 76%, respectively. On an intention-to-treat basis, the 2-year overall survival was 61% for the RD arm and 70% for the URD arm. Ruxolitinib can be integrated as pretransplantation treatment for patients with MF, and a tapering strategy before transplantation is safe, allowing patients to commence conditioning therapy with a reduced symptom burden. However, GF and NRM remain significant
    corecore