292 research outputs found
Recommended from our members
Topography evolution of germanium thin films synthesized by pulsed laser deposition
Germanium thin films were deposited by Pulsed Laser Deposition (PLD) onto single crystal Ge (100) and Si (100) substrates with a native oxide film on the surface. The topography of the surface was investigated by Atomic Force Microscopy (AFM) to evaluate the scaling behavior of the surface roughness of amorphous and polycrystalline Ge films grown on substrates with different roughnesses. Roughness evolution was interpreted within the framework of stochastic rate equations for thin film growth. Here the Kardar-Parisi-Zhang equation was used to describe the smoothening process. Additionally, a roughening regime was observed in which 3-dimensional growth occurred. Diffusion of the deposited Ge adatoms controlled the growth of the amorphous Ge thin films. The growth of polycrystalline thin Ge films was dominated by diffusion processes only in the initial stage of the growth
Elucidating the effect of mass transport resistances on hydrogen crossover and cell performance in PEM water electrolyzers by varying the cathode ionomer content
An important challenge for polymer electrolyte membrane (PEM) water electrolysis is to reduce the permeation of the produced gases. This crossover affects the cell efficiency and causes safety issues. The crossover increases with current density, most probably due to mass transfer resistances. This work aims to investigate the influence of the cathode ionomer content on hydrogen crossover. Therefore, the ionomer content was varied between 10 and 40 wt% to clearly influence the mass transfer resistances. The best performance and lowest crossover was obtained for 10 wt% ionomer. However, within the observed ionomer range the mass transfer resistances increase with ionomer content that cause increases in hydrogen crossover and cell voltage. Both can be entirely explained by the same quantity of supersaturated dissolved hydrogen concentrations. These supersaturated concentrations cause higher cathode half-cell potentials, which explain the cell voltage increase and lead to higher concentration gradients across the membrane, which enhance the crossover. These findings highlight the importance of mass transfer resistances within catalyst layers in terms of crossover and performance. They constitute an important step in the clarification of the complex interplay between mass transport and voltage losses, enabling the development of novel electrode architectures for PEM water electrolyzers. © The Author(s) 2019
Understanding electrical under- and overshoots in proton exchange membrane water electrolysis cells
Ability of dynamic operation seems to be an important feature of proton exchange membrane water electrolyzers (PEMWE) to become a relevant part of the future energy system. However, only few fundamental analyzes of the dynamic behavior on short time scales are available in the literature. Therefore, this contribution aims to give insights into the most fundamental transient behavior of a PEMWE cell by an experimental analysis on the laboratory scale and a model based description of the ongoing phenomena. Experimental voltage and current controlled load step are carried out and analyzed by methods adapted from fuel cell characterization. The experimental analysis revealed that load steps are a combination of an instantaneous characteristic followed by dynamics of higher order dependent on activation, mass transfer and temperature effects. Potentiostatic downward steps to very low cell voltages can lead to current density reversal phenomena with highly negative peak current densities. By means of a simple prototype model analysis, these reversal processes are analyzed and the consequences of the phenomena are estimated. The simulation results indicate that a reversal of the cell current density can be attributed to a change of capacitive rather than faradaic currents, meaning that internal electrolysis processes are not involved. © The Author(s) 2019. Published by ECS
Integrated dielectric spectrometer for wideband and highspeed measurements using pseudo-noise codes
The paper gives a short introduction into some system-theoretic aspects and features of dielectric measurements by periodic wideband signals. Based on these considerations, a related measurement concept will be presented which is well suited for both compact device implementation and monolithic integration. Some implementation examples are shown and first measurement results are presented
Temperature and Performance Inhomogeneities in PEM Electrolysis Stacks with Industrial Scale Cells
In this work temperature inhomogeneities and their influence on PEMWE performance of industrial-scale stacks are investigated. Three temperature differences are examined: (i) between the inlet and outlet, (ii) in-between the cells of a stack, (iii) between the cell’s solid materials and the fluids. A validated stack model for temperature and performance is presented which is used to quantify the above-mentioned temperature fields and their influences on current density distribution and cell voltages. For a chosen scenario, with current densities of 2.0 A cm−2, fluid inlet temperatures of 60 °C and flow-rates of 0.15 kg s−1m−2, peak temperature differences amount to 8.2 K along-the-channel. This relates to inhomogeneities of current density of up to 10% inside a cell and deviations of cell voltage of 9 mV in-between cells in the center of the stack and outer cells. For higher current densities these differences increase further. More homogeneous temperatures allow operation at elevated average temperatures without exceeding temperature limitations and reduce the spread of degradation mechanisms. Hence, homogenous profiles lead to a more hole-some utilization of electrolysis stacks. Therefore, the ability to homogenize via alternative operation such as higher flow-rate, higher pressure and altered routing of fluid-flow is analyzed
Recommended from our members
Preparation and characterisation of carbon-free Cu(111) films on sapphire for graphene synthesis
This work presents an investigation of carbon formed on polycrystalline Cu(111) thin films prepared by ion beam sputtering at room temperature on c-plane Al2O3 after thermal treatment in a temperature range between 300 and 1020°C. The crystallinity of the Cu films was studied by XRD and RBS/channeling and the surface was characterised by Raman spectroscopy, XPS and AFM for each annealing temperature. RBS measurements revealed the diffusion of the Cu into the Al2O3 substrate at high temperatures of > 700°C. Furthermore, a cleaning procedure using UV ozone treatment is presented to remove the carbon from the surface which yields essentially carbon-free Cu films that open the possibility to synthesize graphene of well-controlled thickness (layer number)
Parkinson's disease may disrupt overlapping subthalamic nucleus and pallidal motor networks.
There is an ongoing debate about differential clinical outcome and associated adverse effects of deep brain stimulation (DBS) in Parkinson's disease (PD) targeting the subthalamic nucleus (STN) or the globus pallidus pars interna (GPi). Given that functional connectivity profiles suggest beneficial DBS effects within a common network, the empirical evidence about the underlying anatomical circuitry is still scarce. Therefore, we investigate the STN and GPi-associated structural covariance brain patterns in PD patients and healthy controls. We estimate GPi's and STN's whole-brain structural covariance from magnetic resonance imaging (MRI) in a normative mid- to old-age community-dwelling cohort (n = 1184) across maps of grey matter volume, magnetization transfer (MT) saturation, longitudinal relaxation rate (R1), effective transversal relaxation rate (R2*) and effective proton density (PD*). We compare these with the structural covariance estimates in patients with idiopathic PD (n = 32) followed by validation using a reduced size controls' cohort (n = 32). In the normative data set, we observed overlapping spatially distributed cortical and subcortical covariance patterns across maps confined to basal ganglia, thalamus, motor, and premotor cortical areas. Only the subcortical and midline motor cortical areas were confirmed in the reduced size cohort. These findings contrasted with the absence of structural covariance with cortical areas in the PD cohort. We interpret with caution the differential covariance maps of overlapping STN and GPi networks in patients with PD and healthy controls as correlates of motor network disruption. Our study provides face validity to the proposed extension of the currently existing structural covariance methods based on morphometry features to multiparameter MRI sensitive to brain tissue microstructure
Membrane Interlayer with Pt Recombination Particles for Reduction of the Anodic Hydrogen Content in PEM Water Electrolysis
Polymer electrolyte membrane (PEM) water electrolysis is a key technology for sustainable hydrogen based energy supply. Gas permeation through the PEM leads to hydrogen in oxygen at the anode side posing a safety hazard and therefore restricting the operation window of PEM water electrolysis, especially when operating under pressure. In this work the hydrogen in oxygen content at the anode is significantly reduced when a recombination interlayer is integrated into the membrane electrode assemblies (MEAs) compared to reference MEAs without interlayer. The recombination interlayer with a platinum loading of 0.02 mg cm− 2 is sprayed between two membranes that are coated with anode and cathode catalysts on the outside. The permeating H2 and O2 forms water at the recombination interlayer, leading to higher gas purity and resolving safety issues. In case of the MEAs with interlayer also a constant current hold at 1 A cm− 2 for 245 h revealed only a slight increase of the hydrogen in oxygen content (below 140 · 10− 6 vol.% h− 1) whereas for the reference MEAs without interlayer a stronger increase was observed (above 1250 · 10− 6 vol.% h− 1). Furthermore, the long-term experiments showed no increased degradation rates compared to the reference MEAs
Cognitive effects of high-frequency repetitive transcranial magnetic stimulation: a systematic review
Transcranial magnetic stimulation (TMS) was introduced as a non-invasive tool for the investigation of the motor cortex. The repetitive application (rTMS), causing longer lasting effects, was used to study the influence on a variety of cerebral functions. High-frequency (>1 Hz) rTMS is known to depolarize neurons under the stimulating coil and to indirectly affect areas being connected and related to emotion and behavior. Researchers found selective cognitive improvement after high-frequency (HF) stimulation specifically over the left dorsolateral prefrontal cortex (DLPFC). This article provides a systematic review of HF-rTMS studies (1999–2009) stimulating over the prefrontal cortex of patients suffering from psychiatric/neurological diseases or healthy volunteers, where the effects on cognitive functions were measured. The cognitive effect was analyzed with regard to the impact of clinical status (patients/healthy volunteers) and stimulation type (verum/sham). RTMS at 10, 15 or 20 Hz, applied over the left DLPFC, within a range of 10–15 successive sessions and an individual motor threshold of 80–110%, is most likely to cause significant cognitive improvement. In comparison, patients tend to reach a greater improvement than healthy participants. Limitations concern the absence of healthy groups in clinical studies and partly the absence of sham groups. Thus, future investigations are needed to assess cognitive rTMS effects in different psychiatric disorders versus healthy subjects using an extended standardized neuropsychological test battery. Since the pathophysiological and neurobiological basis of cognitive improvement with rTMS remains unclear, additional studies including genetics, experimental neurophysiology and functional brain imaging are necessary to explore stimulation-related functional changes in the brain
Structural variants exhibit widespread allelic heterogeneity and shape variation in complex traits
This work is licensed under a Creative Commons Attribution 4.0 International License.It has been hypothesized that individually-rare hidden structural variants (SVs) could account for a significant fraction of variation in complex traits. Here we identified more than 20,000 euchromatic SVs from 14 Drosophila melanogaster genome assemblies, of which ~40% are invisible to high specificity short-read genotyping approaches. SVs are common, with 31.5% of diploid individuals harboring a SV in genes larger than 5kb, and 24% harboring multiple SVs in genes larger than 10kb. SV minor allele frequencies are rarer than amino acid polymorphisms, suggesting that SVs are more deleterious. We show that a number of functionally important genes harbor previously hidden structural variants likely to affect complex phenotypes. Furthermore, SVs are overrepresented in candidate genes associated with quantitative trait loci mapped using the Drosophila Synthetic Population Resource. We conclude that SVs are ubiquitous, frequently constitute a heterogeneous allelic series, and can act as rare alleles of large effect
- …