3,429 research outputs found
In vitro screening of different Pseudomonas fluorescens isolates to study lytic enzyme production and growth inhibition during antagonism of Fusarium oxysporum f. sp. cumini, wilt causing pathogen of cumin
peer-reviewedLand plants exist in close association with bacterial and fungal microbes, where some associations can be pathogenic and others can be mutualistic/beneficial. One such relation exists between host plant, Cuminum cyminum L. (Cumin) and Fusarium oxysporum f. sp. cumini (Foc), the causal pathogen of cumin wilt and Pseudomonas fluorescens (Pf), where Pf acts as a bio-agent for inhibiting Foc and promoting plant growth of cumin. In this study, antagonism by 10 different Pf isolates against Foc was studied under laboratory conditions through percent growth inhibition and biochemical mechanisms. Among these Pf isolates, Pf-5 exhibited the highest in vitro growth inhibition (82.51%). A positive correlation was observed between percent growth inhibition and specific activities of hydrolytic enzymes, chitinase, β-1, 3 glucanase, and protease, where a negative correlation was observed with cell wall degrading enzymes, cellulase and polygalacturonase. To conclude, isolate Pf-5 could be a potential biocontrol agent for Fusarium wilt disease of cumin
Preparation and Structures of Crystalline Aromatic Cation-Radical Salts. Triethyloxonium Hexachloroantimonate as a Novel (One-Electron) Oxidant
Triethyloxonium hexachloroantimonate [Et3O+SbCl6-] is a selective oxidant of aromatic donors (ArH), and it allows the facile preparation and isolation of crystalline paramagnetic salts [ArH+•, SbCl6-] for the X-ray structure determination of various aromatic cation radicals. The mechanistic relationship between the Meerwein salt [Et3O+SbCl6-] and the pure Lewis acid oxidant SbCl5 is based on a prior ethyl transfer from oxygen to chlorine within the ion pair
FHBC, a Hexa‐\u3cem\u3eperi\u3c/em\u3e‐hexabenzocoronene–Fluorene Hybrid: A Platform for Highly Soluble, Easily Functionalizable HBCs with an Expanded Graphitic Core
Materials based upon hexa‐peri‐hexabenzocoronenes (HBCs) show significant promise in a variety of photovoltaic applications. There remains the need, however, for a soluble, versatile, HBC‐based platform, which can be tailored by incorporation of electroactive groups or groups that can prompt self‐assembly. The synthesis of a HBC–fluorene hybrid is presented that contains an expanded graphitic core that is highly soluble, resists aggregation, and can be readily functionalized at its vertices. This new HBC platform can be tailored to incorporate six electroactive groups at its vertices, as exemplified by a facile synthesis of a representative hexaaryl derivative of FHBC. Synthesis of new FHBC derivatives, containing electroactive functional groups that can allow controlled self‐assembly, may serve as potential long‐range charge‐transfer materials for photovoltaic applications
Disproportionation and Structural Changes of Tetraarylethylene Donors upon Successive Oxidation to Cation Radicals and to Dications
The stepwise (one-electron) chemical oxidation of the tetraphenylethylene donor and its substituted analogues (D) can be carried out by electron exchange with aromatic cations or antimony(V) oxidants to selectively afford the cation radical (D+•) initially and then the dication (D2+). The ready interchange of the latter establishes the facile disproportionation (i.e., 2D+• ⇌ D2+ + D) that was originally examined by only transient electrochemical techniques. The successful isolations of the crystalline salts of the tetraanisylethylene cation radical (1+•) as well as the tetraanisylethylene dication (12+) allow X-ray diffraction analysis (for the first time) to quantify the serial changes in the molecular structure upon successive oxidations. Five structural parameters (d, l, θ, φ, and q) are identified as quantitative measures of changes in bond (CαCβ, Cαanisyl) lengths, dihedral (CαCβ)/torsional (anisyl) angles, and quinoidal (anisyl) distortion attendant upon the removal of first one-electron and then another electron from the tetraanisylethylene framework. The linear variation of all five parameters in Chart 3 point to a strongly coupled relaxation of tetraanisylethylene (involving simultaneous changes of d, l, θ, φ, and q) to a severely twisted dication. Most noteworthy is the structure of the cation radical 1+• with d, l, θ, φ, and q values that are exactly one-half those of the dication. The complex molecular changes accompanying the transformation: D → D+• → D2+ bear directly on the donor properties and the disproportionation processes of various tetraarylethylenes
Novel Synthesis and Structures of Tris-Annelated Benzene Donors for the Electron-Density Elucidation of the Classical Mills−Nixon Effect
A versatile method for the high-yield synthesis of various tris-, bis-, and mono-annelated benzenes (as well as cyclooctatetraene) is based on the Pd-catalyzed coupling of three (or four) ethylenic units comprised of α,β-dibromoalkenes and α‘-alkenyl Grignard reagentsall carried out in a single pot. The particular application to tris(bicyclopentyl)-annelated benzene yields the syn isomer 1s in high purity; X-ray diffraction analysis confirms the aromatic bond alternation relevant to the Mills−Nixon effect. Most importantly, the efficient synthesis of 1s crystals of extraordinary quality allows us (for the first time) to make precise electron-density measurements of the “banana-type” distortion and the ellipticity (π-character) of the various aromatic C−C bondssufficient to identify the electronic origin of the classical Mills−Nixon effect. The unique electron-donor properties of tris-annelated benzenes also relate to their highly reversible one-electron oxidation potentials even in nonpolar solvents
Subgap Two-Photon States in Polycyclic Aromatic Hydrocarbons: Evidence for Strong Electron Correlations
Strong electron correlation effects in the photophysics of
quasi-one-dimensional -conjugated organic systems such as polyenes,
polyacetylenes, polydiacetylenes, etc., have been extensively studied. Far less
is known on correlation effects in two-dimensional -conjugated systems.
Here we present theoretical and experimental evidence for moderate repulsive
electron-electron interactions in a number of finite polycyclic aromatic
hydrocarbon molecules with symmetry. We show that the excited state
orderings in these molecules are reversed relative to that expected within
one-electron and mean-field theories. Our results reflect similarities as well
as differences in the role and magnitude of electron correlation effects in
these two-dimensional molecules compared to those in polyenes.Comment: 11 pages, 5 figures, 2 table
- …