2,506 research outputs found

    Endogenous and Ectopic Expression ofnogginSuggests a Conserved Mechanism for Regulation of BMP Function during Limb and Somite Patterning

    Get PDF
    AbstractThe genenoggin,originally cloned inXenopus,encodes a secreted factor expressed in the Spemann organizer, where it functions to oppose the ventralizing influence of bone morphogenetic proteins (BMPs). Noggin protein acts by binding directly to BMPs, thereby preventing them from interacting with their receptors. Here we describe the pattern of expression of the chickennoggingene during somite and limb development, two tissues in which BMPs have been postulated to play essential patterning roles. We find thatnogginis expressed in dynamic restricted patterns consistent with an important role in the modulation of BMP signaling. Using a replication competent retrovirus we have ectopically expressednogginin developing somitic and limb bud mesoderm and observed phenotypes consistent with complete block of BMP activity. This includes suppression of lateral somite differentiation and, in the limb, complete inhibition of chondrogenesis and local suppression of programmed cell death. In addition, we find that ectopicnogginexpression in the limb has no effect on anteroposterior limb pattern, suggesting that BMPs are unlikely to play a significant role in this process. Taken together, our results indicate thatnogginis a key regulator of vertebrate limb and somite patterning and suggest that the antagonistic Noggin–BMP interaction is a widely used mechanism to modulate BMP signaling during multiple inductive events in vertebrate embryogenesis

    Transcriptional Co-repressor Function of the Hippo Pathway Transducers YAP and TAZ

    Get PDF
    SummaryYAP (yes-associated protein) and TAZ are oncogenic transcriptional co-activators downstream of the Hippo tumor-suppressor pathway. However, whether YAP and/or TAZ (YAP/TAZ) engage in transcriptional co-repression remains relatively unexplored. Here, we directly demonstrated that YAP/TAZ represses numerous target genes, including tumor-suppressor genes such as DDIT4 (DNA-damage-inducible transcript 4) and Trail (TNF-related apoptosis-inducing ligand). Mechanistically, the repressor function of YAP/TAZ requires TEAD (TEA domain) transcription factors. A YAP/TAZ-TEAD complex recruits the NuRD complex to deacetylate histones and alters nucleosome occupancy at target genes. Functionally, repression of DDIT4 and Trail by YAP/TAZ is required for mTORC1 (mechanistic target of rapamycin complex 1) activation and cell survival, respectively. Our demonstration of the transcriptional co-repressor activity of YAP/TAZ opens a new avenue for understanding the Hippo signaling pathway

    Interaction of Ihh and BMP/Noggin Signaling during Cartilage Differentiation

    Get PDF
    AbstractBone morphogenetic proteins (BMPs) have been implicated in regulating multiple stages of bone development. Recently it has been shown that constitutive activation of theBMP receptor-IAblocks chondrocyte differentiation in a similar manner as misexpression ofIndian hedgehog.In this paper we analyze the role of BMPs as possible mediators of Indian hedgehog signaling and useNogginmisexpression to gain insight into additional roles of BMPs during cartilage differentiation. We show by comparative analysis ofBMPandIhhexpression domains that the borders ofIndian hedgehogexpression in the chondrocytes are reflected in changes of the expression level of severalBMPgenes in the adjacent perichondrium. We further demonstrate that misexpression ofIndian hedgehogappears to directly upregulateBMP2andBMP4expression, independent of the differentiation state of the flanking chondrocytes. In contrast, changes inBMP5andBMP7expression in the perichondrium correspond to altered differentiation states of the flanking chondrocytes. In addition,NogginandChordin,which are both expressed in the developing cartilage elements, also change their expression pattern afterIhhmisexpression. Finally, we use retroviral misexpression ofNoggin,a potent antagonist of BMP signaling, to gain insight into additional roles of BMP signaling during cartilage differentiation. We find that BMP signaling is necessary for the growth and differentiation of the cartilage elements. In addition, this analysis revealed that the members of the BMP/Noggin signaling pathway are linked in a complex autoregulatory network

    Dynamic Expression oflunatic fringeSuggests a Link betweennotchSignaling and an Autonomous Cellular Oscillator Driving Somite Segmentation

    Get PDF
    AbstractThe metameric organization of the vertebrate trunk is a characteristic feature of all members of this phylum. The origin of this metamerism can be traced to the division of paraxial mesoderm into individual units, termed somites, during embryonic development. Despite the identification of somites as the first overt sign of segmentation in vertebrates well over 100 years ago, the mechanism(s) underlying somite formation remain poorly understood. Recently, however, several genes have been identified which play prominent roles in orchestrating segmentation, including the novel secreted factorlunatic fringe.To gain further insight into the mechanism by whichlunatic fringecontrols somite development, we have conducted a thorough analysis oflunatic fringeexpression in the unsegmented paraxial mesoderm of chick embryos. Here we report thatlunatic fringeis expressed predominantly in somite −II, where somite I corresponds to the most recently formed somite and somite −I corresponds to the group of cells which will form the next somite. In addition, we show thatlunatic fringeis expressed in a highly dynamic manner in the chick segmental plate prior to somite formation and thatlunatic fringeexpression cycles autonomously with a periodicity of somite formation. Moreover, the murine ortholog oflunatic fringeundergoes a similar cycling expression pattern in the presomitic mesoderm of somite stage mouse embryos. The demonstration of a dynamic periodic expression pattern suggests thatlunatic fringemay function to integrate notch signaling to a cellular oscillator controlling somite segmentation

    Gene expression profiles in developing nephrons using Lim1 metanephric mesenchyme-specific conditional mutant mice

    Get PDF
    BACKGROUND: Lim1 is a homeobox gene that is essential for nephrogenesis. During metanephric kidney development, Lim1 is expressed in the nephric duct, ureteric buds, and the induced metanephric mesenchyme. Conditional ablation of Lim1 in the metanephric mesenchyme blocks the formation of nephrons at the nephric vesicle stage, leading to the production of small, non-functional kidneys that lack nephrons. METHODS: In the present study, we used Affymetrix probe arrays to screen for nephron-specific genes by comparing the expression profiles of control and Lim1 conditional mutant kidneys. Kidneys from two developmental stages, embryonic day 14.5 (E14.5) and 18.5 (E18.5), were examined. RESULTS: Comparison of E18.5 kidney expression profiles generated a list of 465 nephron-specific gene candidates that showed a more than 2-fold increase in their expression level in control kidney versus the Lim1 conditional mutant kidney. Computational analysis confirmed that this screen enriched for kidney-specific genes. Furthermore, at least twenty-eight of the top fifty (56%) candidates (or their vertebrate orthologs) were previously reported to have a nephron-specific expression pattern. Our analysis of E14.5 expression data yielded 41 candidate genes that are up-regulated in the control kidneys compared to the conditional mutants. Three of them are related to the Notch signaling pathway that is known to be important in cell fate determination and nephron patterning. CONCLUSION: Therefore, we demonstrate that Lim1 conditional mutant kidneys serve as a novel tissue source for comprehensive expression studies and provide a means to identify nephron-specific genes

    Distinct Compartments of the Proepicardial Organ Give Rise to Coronary Vascular Endothelial Cells

    Get PDF
    SummaryThe proepicardial organ is an important transient structure that contributes cells to various cardiac lineages. However, its contribution to the coronary endothelium has been disputed, with conflicting data arising in chick and mouse. Here we resolve this conflict by identifying two proepicardial markers, Scleraxis (Scx) and Semaphorin3D (Sema3D), that genetically delineate heretofore uncharacterized proepicardial subcompartments. In contrast to previously fate-mapped Tbx18/WT-1-expressing cells that give rise to vascular smooth muscle, Scx- and Sema3D-expressing proepicardial cells give rise to coronary vascular endothelium both in vivo and in vitro. Furthermore, Sema3D+ and Scx+ proepicardial cells contribute to the early sinus venosus and cardiac endocardium, respectively, two tissues linked to vascular endothelial formation at later stages. Taken together, our studies demonstrate that the proepicardial organ is a molecularly compartmentalized structure, reconciling prior chick and mouse data and providing a more complete understanding of the progenitor populations that establish the coronary vascular endothelium

    Dual function of Yap in the regulation of lens progenitor cells and cellular polarity

    Get PDF
    AbstractHippo-Yap signaling has been implicated in organ size determination via its regulation of cell proliferation, growth and apoptosis (Pan, 2007). The vertebrate lens comprises only two major cell types, lens progenitors and differentiated fiber cells, thereby providing a relatively simple system for studying size-controlling mechanisms. In order to investigate the role of Hippo-Yap signaling in lens size regulation, we conditionally ablated Yap in the developing mouse lens. Lens progenitor-specific deletion of Yap led to near obliteration of the lens primarily due to hypocellularity in the lens epithelium (LE) and accompanying lens fiber (LF) defects. A significantly reduced LE progenitor pool resulted mainly from failed self-renewal and increased apoptosis. Additionally, Yap-deficient lens progenitor cells precociously exited the cell cycle and expressed the LF marker, β-Crystallin. The mutant progenitor cells also exhibited multiple cellular and subcellular alterations including cell and nuclear shape change, organellar polarity disruption, and disorganized apical polarity complex and junction proteins such as Crumbs, Pals1, Par3 and ZO-1. Yap-deficient LF cells failed to anchor to the overlying LE layer, impairing their normal elongation and packaging. Furthermore, our localization study results suggest that, in the developing LE, Yap participates in the cell context-dependent transition from the proliferative to differentiation-competent state by integrating cell density information. Taken together, our results shed new light on Yap's indispensable and novel organizing role in mammalian organ size control by coordinating multiple events including cell proliferation, differentiation, and polarity

    YAP/TAZ Activation Drives Uveal Melanoma Initiation and Progression

    Get PDF
    Uveal melanoma (UM), the most common ocular malignancy, is characterized by GNAQ/11 mutations. Hippo/YAP and Ras/mitogen-activated protein kinase (MAPK) emerge as two important signaling pathways downstream of G protein alpha subunits of the Q class (GalphaQ/11)-mediated transformation, although whether and how they contribute to UM genesis in vivo remain unclear. Here, we adapt an adeno-associated virus (AAV)-based ocular injection method to directly deliver Cre recombinase into the mouse uveal tract and demonstrate that Lats1/2 kinases suppress UM formation specifically in uveal melanocytes. We find that genetic activation of YAP, but not Kras, is sufficient to initiate UM. We show that YAP/TAZ activation induced by Lats1/2 deletion cooperates with Kras to promote UM progression via downstream transcriptional reinforcement. Furthermore, dual inhibition of YAP/TAZ and Ras/MAPK synergizes to suppress oncogenic growth of human UM cells. Our data highlight the functional significance of Lats-YAP/TAZ in UM initiation and progression in vivo and suggest combination inhibition of YAP/TAZ and Ras/MAPK as a new therapeutic strategy for UM
    • …
    corecore