41,728 research outputs found

    Case, Agreement and EPP: Evidence from an English-speaking child

    Get PDF

    Macroscopic approximation to relativistic kinetic theory from a nonlinear closure

    Get PDF
    We use a macroscopic description of a system of relativistic particles based on adding a nonequilibrium tensor to the usual hydrodynamic variables. The nonequilibrium tensor is linked to relativistic kinetic theory through a nonlinear closure suggested by the Entropy Production Principle; the evolution equation is obtained by the method of moments, and together with energy-momentum conservation closes the system. Transport coefficients are chosen to reproduce second order fluid dynamics if gradients are small. We compare the resulting formalism to exact solutions of Boltzmann's equation in 0+1 dimensions and show that it tracks kinetic theory better than second order fluid dynamics.Comment: v2: 6 two-column pages, 2 figures. Corrected typos and a numerical error, and added reference

    A hydrodynamic approach to QGP instabilities

    Get PDF
    We show that the usual linear analysis of QGP Weibel instabilities based on the Maxwell-Boltzmann equation may be reproduced in a purely hydrodynamic model. The latter is derived by the Entropy Production Variational Method from a transport equation including collisions, and can describe highly nonequilibrium flow. We find that, as expected, collisions slow down the growth of Weibel instabilities. Finally, we discuss the strong momentum anisotropy limit.Comment: 11 pages, no figures. v2: minor changes, added references. Accepted in Phys. Rev.

    On the nature of the Lambda(1405) as a superposition of two states

    Full text link
    We use recent data on the K−p→π0π0Σ0K^- p \to \pi^0 \pi^0 \Sigma^0 reaction with the π0Σ0\pi^0 \Sigma^0 mass distribution of forming the Λ(1405)\Lambda(1405) with a peak at 1420 MeV and a relatively narrow width of Γ=38\Gamma = 38 MeV, together with those of the π−p→K0πΣ\pi^- p \to K^0 \pi \Sigma reaction to show that there are two Λ(1405)\Lambda(1405) states instead of one as so far assumed.Comment: Contribution to the PANIC05 Conference, Santa Fe, October 200

    Triangle singularities in B−→K−π−Ds0+B^-\rightarrow K^-\pi^-D_{s0}^+ and B−→K−π−Ds1+B^-\rightarrow K^-\pi^-D_{s1}^+

    Full text link
    We study the appearance of structures in the decay of the B−B^- into K−π−Ds0+(2317)K^- \pi^- D_{s0}^+(2317) and K−π−Ds1+(2460)K^- \pi^- D_{s1}^+(2460) final states by forming invariant mass distributions of π−Ds0+\pi^- D_{s0}^+ and π−Ds1+\pi^- D_{s1}^+ pairs, respectively. The structure in the distribution is associated to the kinematical triangle singularity that appears when the B−→K−K∗ 0D0B^- \to K^- K^{*\,0} D^0 (B−→K−K∗ 0D∗ 0B^- \to K^- K^{*\,0} D^{*\,0}) decay process is followed by the decay of the K∗ 0K^{*\,0} into π−K+\pi^- K^+ and the subsequent rescattering of the K+D0K^+ D^0 (K+D∗ 0K^+ D^{*\,0}) pair forming the Ds0+(2317)D_{s0}^+(2317) (Ds1+(2460)D_{s1}^+(2460)) resonance. We find this type of non-resonant peaks at 2850 MeV in the invariant mass of π−Ds0\pi^- D_{s0} pairs from B−→K−π−Ds0+(2317)B^- \to K^- \pi^- D_{s0}^+(2317) decays and around 3000 MeV in the invariant mass of π−Ds1+\pi^- D_{s1}^+ pairs from B−→K−π−Ds1+(2460)B^- \to K^- \pi^- D_{s1}^+(2460) decays. By employing the measured branching ratios of the B−→K−K∗ 0D0B^- \to K^- K^{*\,0} D^0 and B−→K−K∗ 0D∗ 0B^- \to K^- K^{*\,0} D^{*\,0} decays, we predict the branching ratios for the processes B−B^- into K−π−Ds0+(2317)K^- \pi^-D_{s0}^+(2317) and K−π−Ds1+(2460)K^- \pi^- D_{s1}^+(2460), in the vicinity of the triangle singularity peak, to be about 8×10−68\times10^{-6} and 1×10−61\times 10^{-6}, respectively. The observation of this reaction would also give extra support to the molecular picture of the Ds0+(2317)D_{s0}^+(2317) and Ds1+(2460)D_{s1}^+(2460).Comment: 18 pages, 15 figures, accepted version for publication in Eur. Phys. J.
    • …
    corecore