29 research outputs found
Digitotalar dysmorphism: Molecular elucidation
Dominantly inherited digitotalar dysmorphism (DTD), which is characterised by flexion contractures of digits and ‘rocker-bottom’ feet due to a vertical talus, was first described in a South African family of European stock in 1972. We review the clinical manifestations and document the molecular basis for DTD in this prototype family. This family was restudied in 1995 and 2006 and biological specimens were obtained for molecular studies. Since the distal arthrogryposes (DAs) are genetically heterogeneous, an unbiased approach to mutation identification was undertaken through whole-exome next-generation sequencing of DNA from a single DTD-affected female. Venous blood specimens were obtained for DNA banking and subsequent molecular studies. Analysis of the nine genes that had previously been shown to cause DAs revealed a pathogenic mutation in exon nine of TNNT3. The presence of the p.(Arg63His) missense mutation at position 63 of TNNT3 was confirmed through direct cycle sequencing of genomic DNA in six affected family members for whom DNA had been archived
Strengthening human genetics research in Africa: report of the 9th meeting of the African Society of Human Genetics in Dakar in May 2016.
The 9th meeting of the African Society of Human Genetics, in partnership with the Senegalese Cancer Research and Study Group and the Human Heredity and Health in Africa (H3Africa) Consortium, was held in Dakar, Senegal. The theme was Strengthening Human Genetics Research in Africa. The 210 delegates came from 21 African countries and from France, Switzerland, UK, UAE, Canada and the USA. The goal was to highlight genetic and genomic science across the African continent with the ultimate goal of improving the health of Africans and those across the globe, and to promote the careers of young African scientists in the field. A session on the sustainability of genomic research in Africa brought to light innovative and practical approaches to supporting research in resource-limited settings and the importance of promoting genetics in academic, research funding, governmental and private sectors. This meeting led to the formation of the Senegalese Society for Human Genetics
Structural Variants Create New Topological-Associated Domains and Ectopic Retinal Enhancer-Gene Contact in Dominant Retinitis Pigmentosa
The cause of autosomal-dominant retinitis pigmentosa (adRP), which leads to loss of vision and blindness, was investigated in families lacking a molecular diagnosis. A refined locus for adRP on Chr17q22 (RP17) was delineated through genotyping and genome sequencing, leading to the identification of structural variants (SVs) that segregate with disease. Eight different complex SVs were characterized in 22 adRP-affected families with >300 affected individuals. All RP17 SVs had breakpoints within a genomic region spanning YPEL2 to LINC01476. To investigate the mechanism of disease, we reprogrammed fibroblasts from affected individuals and controls into induced pluripotent stem cells (iPSCs) and differentiated them into photoreceptor precursor cells (PPCs) or retinal organoids (ROs). Hi-C was performed on ROs, and differential expression of regional genes and a retinal enhancer RNA at this locus was assessed by qPCR. The epigenetic landscape of the region, and Hi-C RO data, showed that YPEL2 sits within its own topologically associating domain (TAD), rich in enhancers with binding sites for retinal transcription factors. The Hi-C map of RP17 ROs revealed creation of a neo-TAD with ectopic contacts between GDPD1 and retinal enhancers, and modeling of all RP17 SVs was consistent with neo-TADs leading to ectopic retinal-specific enhancer-GDPD1 accessibility. qPCR confirmed increased expression of GDPD1 and increased expression of the retinal enhancer that enters the neo-TAD. Altered TAD structure resulting in increased retinal expression of GDPD1 is the likely convergent mechanism of disease, consistent with a dominant gain of function. Our study highlights the importance of SVs as a genomic mechanism in unsolved Mendelian diseases
GSTM1 and GSTT1 polymorphisms as modifiers of age at diagnosis of hereditary nonpolyposis colorectal cancer (HNPCC) in a homogeneous cohort of individuals carrying a single predisposing mutation
The variability in phenotype that occurs for so-called 'single-gene disorders' may be because of germline alterations in numerous primary and "modifier" genes. Within HNPCC families harbouring the same primary predisposing mutation, differences exist in the site of cancer, age of onset of disease symptoms and, consequently, survival until diagnosis of disease. The current study investigated a cohort of 129 individuals, from 13 different families, who harbour the identical nonsense mutation (C1528T) in the hMLH1 gene, predisposing them primarily to Lynch I syndrome. This cohort was screened for previously described polymorphisms in the glutathione-S-transferase genes, viz. GSTT1 and GSTM1. Male null carriers for both GSTT1 and GSTM1 were approximately three times more at risk of developing cancer at an earlier age when compared to non-null males. This work, particularly because of the relatively large "homogeneous" primary mutation cohort, provides evidence that genotypic changes distinct from the primary 'HNPCC-causing' mutation, influence the survival period until diagnosis of disease. It provides an impetus for expanding the study to include a wider range of candidate modifier genes. Such work may potentially lead to the development of individualised interval screening regimens for individuals with varying modifier genotypes--an attractive option in a resource-poor country
Clinical application of epilepsy genetics in Africa: is now the time?
Over 80% of people with epilepsy live in low- to middle-income countries where epilepsy is often undiagnosed and untreated due to limited resources and poor infrastructure. In Africa, the burden of epilepsy is exacerbated by increased risk factors such as central nervous system infections, perinatal insults, and traumatic brain injury. Despite the high incidence of these etiologies, the cause of epilepsy in over 60% of African children is unknown, suggesting a possible genetic origin. Large-scale genetic and genomic research in Europe and North America has revealed new genes and variants underlying disease in a range of epilepsy phenotypes. The relevance of this knowledge to patient care is especially evident among infants with early-onset epilepsies, where early genetic testing can confirm the diagnosis and direct treatment, potentially improving prognosis and quality of life. In Africa, however, genetic epilepsies are among the most under-investigated neurological disorders, and little knowledge currently exists on the genetics of epilepsy among African patients. The increased diversity on the continent may yield unique, important epilepsy-associated genotypes, currently absent from the North American or European diagnostic testing protocols. In this review, we propose that there is strong justification for developing the capacity to offer genetic testing for children with epilepsy in Africa, informed mostly by the existing counseling and interventional needs. Initial simple protocols involving well-recognized epilepsy genes will not only help patients but will give rise to further clinically relevant research, thus increasing knowledge and capacity
Clinical application of epilepsy genetics in Africa: is now the time?
Over 80% of people with epilepsy live in low- to middle-income countries where epilepsy is often undiagnosed and untreated due to limited resources and poor infrastructure. In Africa, the burden of epilepsy is exacerbated by increased risk factors such as central nervous system infections, perinatal insults, and traumatic brain injury. Despite the high incidence of these etiologies, the cause of epilepsy in over 60% of African children is unknown, suggesting a possible genetic origin. Large-scale genetic and genomic research in Europe and North America has revealed new genes and variants underlying disease in a range of epilepsy phenotypes. The relevance of this knowledge to patient care is especially evident among infants with early-onset epilepsies, where early genetic testing can confirm the diagnosis and direct treatment, potentially improving prognosis and quality of life. In Africa, however, genetic epilepsies are among the most under-investigated neurological disorders, and little knowledge currently exists on the genetics of epilepsy among African patients. The increased diversity on the continent may yield unique, important epilepsy-associated genotypes, currently absent from the North American or European diagnostic testing protocols. In this review, we propose that there is strong justification for developing the capacity to offer genetic testing for children with epilepsy in Africa, informed mostly by the existing counseling and interventional needs. Initial simple protocols involving well-recognized epilepsy genes will not only help patients but will give rise to further clinically relevant research, thus increasing knowledge and capacity
X-linked late-onset sensorineural deafness caused by a deletion involving OA1 and a novel gene containing WD-40 repeats
We have identified a novel gene, transducin (β)-like 1 (TBL1), in the Xp22.3 genomic region, that shows high homology with members of the WD-40- repeat protein family. The gene contains 18 exons spanning ~150 kb of the genomic region adjacent to the ocular albinism gene (OA1) on the telomeric side. However, unlike OA1, TBL1 is transcribed from telomere to centromere. Northern analysis indicates that TBL1 is ubiquitously expressed, with two transcripts of ~2.1 kb and 6.0 kb. The open reading frame encodes a 526- amino acid protein, which shows the presence of six β-transducin repeats (WD-40 motif) in the C-terminal domain. The homology with known β-subunits of G proteins and other WD-40-repeat containing proteins is restricted to the WD-40 motif. Genomic analysis revealed that the gene is either partly or entirely deleted in patients carrying Xp22.3 terminal deletions. The complexity of the contiguous gene-syndrome phenotype shared by these patients depends on the number of known disease genes involved in the deletions. Interestingly, one patient carrying a microinterstitial deletion involving the 3' portion of both TBL1 and OA1 shows the OA1 phenotype associated with X-linked late-onset sensorineural deafness. We postulate an involvement of TBL1 in the pathogenesis of the ocular albinism with late-onset sensorineural deafness phenotype