214 research outputs found
Evidence for shape coexistence in Mo
A angular correlation experiment has been performed to
investigate the low-energy states of the nucleus Mo. The new data,
including spin assignments, multipole mixing ratios and lifetimes reveal
evidence for shape coexistence and mixing in Mo, arising from a proton
intruder configuration. This result is reproduced by a theoretical calculation
within the proton-neutron interacting boson model with configuration mixing,
based on microscopic energy density functional theory. The microscopic
calculation indicates the importance of the proton particle-hole excitation
across the Z=40 sub-shell closure and the subsequent mixing between spherical
vibrational and the -soft equilibrium shapes in Mo.Comment: 6 pages, 5 figures, 3 tables; published in Phys. Rev.
Investigation of octupole vibrational states in 150Nd via inelastic proton scattering (p,p'g)
Octupole vibrational states were studied in the nucleus
via inelastic proton scattering with \unit[10.9]{MeV} protons which are an
excellent probe to excite natural parity states. For the first time in
, both the scattered protons and the rays were
detected in coincidence giving the possibility to measure branching ratios in
detail. Using the coincidence technique, the ratios of the decaying
transitions for 10 octupole vibrational states and other negative-parity states
to the yrast band were determined and compared to the Alaga rule. The positive
and negative-parity states revealed by this experiment are compared with
Interacting Boson Approximation (IBA) calculations performed in the (spdf)
boson space. The calculations are found to be in good agreement with the
experimental data, both for positive and negative-parity states
High-precision excited state lifetime measurements in rare earth nuclei using LaBr3(Ce) detectors
To study how collective nuclear structure evolves towards mid-shell and test next-generation LaBr3(Ce) scintillation detectors, measurements of the lifetimes of 2+ 1 states in 168Hf and 174W were conducted at the Wright Nuclear Structure Laboratory. Prel
Evolution of collectivity near mid-shell from excited-state lifetime measurements in rare earth nuclei
The B(E2) excitation strength of the first excited 2+ state in even-even nuclei should directly correlate with the size of the valence space and maximize at mid-shell. A previously found saturation of B(E2) strengths in well-deformed rotors at mid-shell is tested through high-precision measurements of the lifetimes of the lowest-lying 2+ states of the Hf168 and W174 rare earth isotopes. Measurements were performed using fast LaBr3 scintillation detectors. Combined with the recently remeasured B(E2;2+1→0+1) values for Hf and W isotopes the new data remove discrepancies observed in the differentials of B(E2) values for these isotope
Mixed-symmetry octupole and hexadecapole excitations in N=52 isotones
In addition to the well-established quadrupole mixed-symmetry states, octupole and hexadecapole excitations with mixed-symmetry character have been recently proposed for the N = 52 isotones 92Zr and 94Mo. We performed two inelastic proton-scattering experiments to study this kind of excitations in the heaviest stable N = 52 isotone 96Ru. From the combined experimental data of both experiments absolute transition strengths were extracted
A detector system for 'absolute' measurements of fission cross sections at n_TOF in the energy range below 200 MeV
A new measurement of the U(n,f) cross section was performed at the
neutron time-of-flight facility n_TOF at CERN. The experiment focused on
neutron energies from 20 MeV to several hundred MeV, and was normalized to
neutron scattering on hydrogen. This is a measurement first of its kind at this
facility, in an energy range that was until now not often explored, so the
detector development phase was crucial for its success. Two detectors are
presented, a parallel plate fission chamber (PPFC) and a recoil proton
telescope (RPT), both dedicated to perform measurements in the incident neutron
energy range from 30 MeV to 200 MeV. The experiment was designed to minimize
statistical uncertainties in the allocated run time. Several efforts were made
to ensure that the systematic effects were understood and under control. The
results show that the detectors are suited for measurements at n_TOF above 30
MeV, and indicate the path for possible future lines of development.Comment: Added acknowledgement to Euratom fundin
Cross section measurements of 155,157Gd(n, γ) induced by thermal and epithermal neutrons
© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019Neutron capture cross section measurements on 155Gd and 157Gd were performed using the time-of-flight technique at the n_TOF facility at CERN on isotopically enriched samples. The measurements were carried out in the n_TOF experimental area EAR1, at 185 m from the neutron source, with an array of 4 C6D6 liquid scintillation detectors. At a neutron kinetic energy of 0.0253 eV, capture cross sections of 62.2(2.2) and 239.8(8.4) kilobarn have been derived for 155Gd and 157Gd, respectively, with up to 6% deviation relative to values presently reported in nuclear data libraries, but consistent with those values within 1.6 standard deviations. A resonance shape analysis has been performed in the resolved resonance region up to 181 eV and 307 eV, respectively for 155Gd and 157Gd, where on average, resonance parameters have been found in good agreement with evaluations. Above these energies and up to 1 keV, the observed resonance-like structure of the cross section has been analysed and characterised. From a statistical analysis of the observed neutron resonances we deduced: neutron strength function of 2. 01 (28) × 10 - 4 and 2. 17 (41) × 10 - 4; average total radiative width of 106.8(14) meV and 101.1(20) meV and s-wave resonance spacing 1.6(2) eV and 4.8(5) eV for n + 155Gd and n + 157Gd systems, respectively.Peer reviewedFinal Accepted Versio
Recoil Proton Telescopes and Parallel Plate Avalanche Counters for the U(n,f) cross section measurement relative to H(n,n)H between 10 and 450 MeV neutron energy
With the aim of measuring the U(n,f) cross section at the n\_TOF
facility at CERN over a wide neutron energy range, a detection system
consisting of two fission detectors and three detectors for neutron flux
determination was realized. The neutron flux detectors are Recoil Proton
Telescopes (RPT), based on scintillators and solid state detectors, conceived
to detect recoil protons from the neutron-proton elastic scattering reaction.
This system, along with a fission chamber and an array of parallel plate
avalanche counters for fission event detection, was installed for the
measurement at the n\_TOF facility in 2018, at CERN.
An overview of the performances of two RPTs - especially developed for this
measurement - and of the parallel plate avalanche counters are described in
this article. In particular, the characterization in terms of detection
efficiency by Monte Carlo simulations and response to neutron beam, the study
of the background, dead time correction and characterization of the samples,
are reported. The results of the present investigation show that the
performances of these detectors are suitable for accurate measurements of
fission reaction cross sections in the range from 10 to 450~MeV
Time-of-flight and activation experiments on 147Pm and 171Tm for astrophysics
The neutron capture cross section of several key unstable isotopes acting as branching points in the s-process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual (n,γ) measurement, for which high neutron fluxes and effective background rejection capabilities are required. As part of a new program to measure some of these important branching points, radioactive targets of 147Pm and 171Tm have been produced by irradiation of stable isotopes at the ILL high flux reactor. Neutron capture on 146Nd and 170Er at the reactor was followed by beta decay and the resulting matrix was purified via radiochemical separation at PSI. The radioactive targets have been used for time-of-flight measurements at the CERN n-TOF facility using the 19 and 185 m beam lines during 2014 and 2015. The capture cascades were detected using a set of four C6D6 scintillators, allowing to observe the associated neutron capture resonances. The results presented in this work are the first ever determination of the resonance capture cross section of 147Pm and 171Tm. Activation experiments on the same 147Pm and 171Tm targets with a high-intensity 30 keV quasi-Maxwellian flux of neutrons will be performed using the SARAF accelerator and the Liquid-Lithium Target (LiLiT) in order to extract the corresponding Maxwellian Average Cross Section (MACS). The status of these experiments and preliminary results will be presented and discussed as well
New measurement of the 242Pu(n,γ) cross section at n-TOF-EAR1 for MOX fuels : Preliminary results in the RRR
The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with 238U to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. The use of MOX fuels in thermal and fast reactors requires accurate capture and fission cross sections. For the particular case of 242Pu, the previous neutron capture cross section measurements were made in the 70's, providing an uncertainty of about 35% in the keV region. In this context, the Nuclear Energy Agency recommends in its "High Priority Request List" and its report WPEC-26 that the capture cross section of 242Pu should be measured with an accuracy of at least 7-12% in the neutron energy range between 500 eV and 500 keV. This work presents a brief description of the measurement performed at n-TOF-EAR1, the data reduction process and the first ToF capture measurement on this isotope in the last 40 years, providing preliminary individual resonance parameters beyond the current energy limits in the evaluations, as well as a preliminary set of average resonance parameters
- …