176 research outputs found

    Perinatal exposure to traffic-related air pollution and autism spectrum disorders

    Get PDF
    Background: Studies from the United States indicate that exposure to air pollution in early life is associated with autism spectrum disorders (ASD) in children, but the evidence is not consistent with European data. Objective: We aimed to investigate the association between exposure to air pollution from road traffic and the risk of ASD in children, with careful adjustment for socioeconomic and other confounders. Method: Children born and residing in Stockholm, Sweden, during 1993–2007 with an ASD diagnosis were identified through multiple health registers and classified as cases (n = 5,136). A randomly selected sample of 18,237 children from the same study base constituted controls. Levels of nitrogen oxides (NOx) and particulate matter with diameter ≤ 10 μm (PM10) from road traffic were estimated at residential addresses during mother’s pregnancy and the child’s first year of life by dispersion models. Odds ratios (OR) and 95% confidence intervals (CI) for ASD with or without intellectual disability (ID) were estimated using logistic regression models after conditioning on municipality and calendar year of birth as well as adjustment for potential confounders. Result: Air pollution exposure during the prenatal period was not associated with ASD overall (OR = 1.00; 95% CI: 0.86, 1.15 per 10-μg/m3 increase in PM10 and OR = 1.02; 95% CI: 0.94, 1.10 per 20-μg/m3 increase in NOx during mother’s pregnancy). Similar results were seen for exposure during the first year of life, and for ASD in combination with ID. An inverse association between air pollution exposure and ASD risk was observed among children of mothers who moved to a new residence during pregnancy. Conclusion: Early-life exposure to low levels of NOx and PM10 from road traffic does not appear to increase the risk of ASD.NonePublishe

    Perinatal exposure to traffic-related air pollution and autism spectrum disorders

    Get PDF
    Background: Studies from the United States indicate that exposure to air pollution in early life is associated with autism spectrum disorders (ASD) in children, but the evidence is not consistent with European data. Objective: We aimed to investigate the association between exposure to air pollution from road traffic and the risk of ASD in children, with careful adjustment for socioeconomic and other confounders. Method: Children born and residing in Stockholm, Sweden, during 1993–2007 with an ASD diagnosis were identified through multiple health registers and classified as cases (n = 5,136). A randomly selected sample of 18,237 children from the same study base constituted controls. Levels of nitrogen oxides (NOx) and particulate matter with diameter ≤ 10 μm (PM10) from road traffic were estimated at residential addresses during mother’s pregnancy and the child’s first year of life by dispersion models. Odds ratios (OR) and 95% confidence intervals (CI) for ASD with or without intellectual disability (ID) were estimated using logistic regression models after conditioning on municipality and calendar year of birth as well as adjustment for potential confounders. Result: Air pollution exposure during the prenatal period was not associated with ASD overall (OR = 1.00; 95% CI: 0.86, 1.15 per 10-μg/m3 increase in PM10 and OR = 1.02; 95% CI: 0.94, 1.10 per 20-μg/m3 increase in NOx during mother’s pregnancy). Similar results were seen for exposure during the first year of life, and for ASD in combination with ID. An inverse association between air pollution exposure and ASD risk was observed among children of mothers who moved to a new residence during pregnancy. Conclusion: Early-life exposure to low levels of NOx and PM10 from road traffic does not appear to increase the risk of ASD.Swedish Research Council for Health, Working Life and Welfare (FORTE), 2012-0573, 2015-00289Swedish Research Council, 2011-3060Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS)Swedish Innovation Agency (VINNOVA), 259-2012-24Swedish Research Council, Swedish Initiative for Research on Microdata in the Social And Medical Sciences (SIMSAM), 340-2013-5867HKH Kronprinsessan Lovisas förening for barnasjukvårdStrategic Research Program in Epidemiology at Karolinska InstitutetPublishe

    CapsID: a web-based tool for developing parsimonious sets of CAPS molecular markers for genotyping

    Get PDF
    BACKGROUND: Genotyping may be carried out by a number of different methods including direct sequencing and polymorphism analysis. For a number of reasons, PCR-based polymorphism analysis may be desirable, owing to the fact that only small amounts of genetic material are required, and that the costs are low. One popular and cheap method for detecting polymorphisms is by using cleaved amplified polymorphic sequence, or CAPS, molecular markers. These are also known as PCR-RFLP markers. RESULTS: We have developed a program, called CapsID, that identifies snip-SNPs (single nucleotide polymorphisms that alter restriction endonuclease cut sites) within a set or sets of reference sequences, designs PCR primers around these, and then suggests the most parsimonious combination of markers for genotyping any individual who is not a member of the reference set. The output page includes biologist-friendly features, such as images of virtual gels to assist in genotyping efforts. CapsID is freely available at . CONCLUSION: CapsID is a tool that can rapidly provide minimal sets of CAPS markers for molecular identification purposes for any biologist working in genetics, community genetics, plant and animal breeding, forensics and other fields

    MagneToRE: Mapping the 3-D Magnetic Structure of the Solar Wind Using a Large Constellation of Nanosatellites

    Get PDF
    Unlike the vast majority of astrophysical plasmas, the solar wind is accessible to spacecraft, which for decades have carried in-situ instruments for directly measuring its particles and fields. Though such measurements provide precise and detailed information, a single spacecraft on its own cannot disentangle spatial and temporal fluctuations. Even a modest constellation of in-situ spacecraft, though capable of characterizing fluctuations at one or more scales, cannot fully determine the plasma’s 3-D structure. We describe here a concept for a new mission, the Magnetic Topology Reconstruction Explorer (MagneToRE), that would comprise a large constellation of in-situ spacecraft and would, for the first time, enable 3-D maps to be reconstructed of the solar wind’s dynamic magnetic structure. Each of these nanosatellites would be based on the CubeSat form-factor and carry a compact fluxgate magnetometer. A larger spacecraft would deploy these smaller ones and also serve as their telemetry link to the ground and as a host for ancillary scientific instruments. Such an ambitious mission would be feasible under typical funding constraints thanks to advances in the miniaturization of spacecraft and instruments and breakthroughs in data science and machine learning

    Sharing Data for Public Health Research by Members of an International Online Diabetes Social Network

    Get PDF
    Background: Surveillance and response to diabetes may be accelerated through engaging online diabetes social networks (SNs) in consented research. We tested the willingness of an online diabetes community to share data for public health research by providing members with a privacy-preserving social networking software application for rapid temporal-geographic surveillance of glycemic control. Methods and Findings: SN-mediated collection of cross-sectional, member-reported data from an international online diabetes SN entered into a software applicaction we made available in a “Facebook-like” environment to enable reporting, charting and optional sharing of recent hemoglobin A1c values through a geographic display. Self-enrollment by 17% (n = 1,136) of n = 6,500 active members representing 32 countries and 50 US states. Data were current with 83.1% of most recent A1c values reported obtained within the past 90 days. Sharing was high with 81.4% of users permitting data donation to the community display. 34.1% of users also displayed their A1cs on their SN profile page. Users selecting the most permissive sharing options had a lower average A1c (6.8%) than users not sharing with the community (7.1%, p = .038). 95% of users permitted re-contact. Unadjusted aggregate A1c reported by US users closely resembled aggregate 2007–2008 NHANES estimates (respectively, 6.9% and 6.9%, p = 0.85). Conclusions: Success within an early adopter community demonstrates that online SNs may comprise efficient platforms for bidirectional communication with and data acquisition from disease populations. Advancing this model for cohort and translational science and for use as a complementary surveillance approach will require understanding of inherent selection and publication (sharing) biases in the data and a technology model that supports autonomy, anonymity and privacy.Centers for Disease Control and Prevention (U.S.) (P01HK000088-01)Centers for Disease Control and Prevention (U.S.) (P01HK000016 )National Institute of Alcohol Abuse and Alcoholism (U.S.) (R21 AA016638-01A1)National Center for Research Resources (U.S.) (1U54RR025224-01)Children's Hospital (Boston, Mass.) (Program for Patient Safety and Quality

    High-Throughput Isolation and Mapping of C. elegans Mutants Susceptible to Pathogen Infection

    Get PDF
    We present a novel strategy that uses high-throughput methods of isolating and mapping C. elegans mutants susceptible to pathogen infection. We show that C. elegans mutants that exhibit an enhanced pathogen accumulation (epa) phenotype can be rapidly identified and isolated using a sorting system that allows automation of the analysis, sorting, and dispensing of C. elegans by measuring fluorescent bacteria inside the animals. Furthermore, we validate the use of Amplifluor® as a new single nucleotide polymorphism (SNP) mapping technique in C. elegans. We show that a set of 9 SNPs allows the linkage of C. elegans mutants to a 5–8 megabase sub-chromosomal region

    Macoilin, a Conserved Nervous System–Specific ER Membrane Protein That Regulates Neuronal Excitability

    Get PDF
    Genome sequence comparisons have highlighted many novel gene families that are conserved across animal phyla but whose biological function is unknown. Here, we functionally characterize a member of one such family, the macoilins. Macoilins are characterized by several highly conserved predicted transmembrane domains towards the N-terminus and by coiled-coil regions C-terminally. They are found throughout Eumetazoa but not in other organisms. Mutants for the single Caenorhabditis elegans macoilin, maco-1, exhibit a constellation of behavioral phenotypes, including defects in aggregation, O2 responses, and swimming. MACO-1 protein is expressed broadly and specifically in the nervous system and localizes to the rough endoplasmic reticulum; it is excluded from dendrites and axons. Apart from subtle synapse defects, nervous system development appears wild-type in maco-1 mutants. However, maco-1 animals are resistant to the cholinesterase inhibitor aldicarb and sensitive to levamisole, suggesting pre-synaptic defects. Using in vivo imaging, we show that macoilin is required to evoke Ca2+ transients, at least in some neurons: in maco-1 mutants the O2-sensing neuron PQR is unable to generate a Ca2+ response to a rise in O2. By genetically disrupting neurotransmission, we show that pre-synaptic input is not necessary for PQR to respond to O2, indicating that the response is mediated by cell-intrinsic sensory transduction and amplification. Disrupting the sodium leak channels NCA-1/NCA-2, or the N-,P/Q,R-type voltage-gated Ca2+ channels, also fails to disrupt Ca2+ responses in the PQR cell body to O2 stimuli. By contrast, mutations in egl-19, which encodes the only Caenorhabditis elegans L-type voltage-gated Ca2+ channel α1 subunit, recapitulate the Ca2+ response defect we see in maco-1 mutants, although we do not see defects in localization of EGL-19. Together, our data suggest that macoilin acts in the ER to regulate assembly or traffic of ion channels or ion channel regulators
    corecore