46 research outputs found
Genetic architecture of epigenetic cortical clock age in brain tissue from older individuals: alterations in <em>CD46</em> and other loci
\ua9 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. The cortical epigenetic clock was developed in brain tissue as a biomarker of brain aging. As one way to identify mechanisms underlying aging, we conducted a GWAS of cortical age. We leveraged postmortem cortex tissue and genotyping array data from 694 participants of the Rush Memory and Aging Project and Religious Orders Study (ROSMAP; 11000,000 SNPs), and meta-analysed ROSMAP with 522 participants of Brains for Dementia Research (5,000,000 overlapping SNPs). We confirmed results using eQTL (cortical bulk and single nucleus gene expression), cortical protein levels (ROSMAP), and phenome-wide association studies (clinical/neuropathologic phenotypes, ROSMAP). In the meta-analysis, the strongest association was rs4244620 (p = 1.29
7 10−7), which also exhibited FDR-significant cis-eQTL effects for CD46 in bulk and single nucleus (microglia, astrocyte, oligodendrocyte, neuron) cortical gene expression. Additionally, rs4244620 was nominally associated with lower cognition, faster slopes of cognitive decline, and greater Parkinsonian signs (n ~ 1700 ROSMAP with SNP/phenotypic data; all p ≤ 0.04). In ROSMAP alone, the top SNP was rs4721030 (p = 8.64
7 10−8) annotated to TMEM106B and THSD7A. Further, in ROSMAP (n = 849), TMEM106B and THSD7A protein levels in cortex were related to many phenotypes, including greater AD pathology and lower cognition (all p ≤ 0.0007). Overall, we identified converging evidence of CD46 and possibly TMEM106B/THSD7A for potential roles in cortical epigenetic clock age
A review of the systematic biology of fossil and living bony-tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei)
The bony-tongue fishes, Osteoglossomorpha, have been the focus of a great deal of morphological, systematic, and evolutionary study, due in part to their basal position among extant teleostean fishes. This group includes the mooneyes (Hiodontidae), knifefishes (Notopteridae), the abu (Gymnarchidae), elephantfishes (Mormyridae), arawanas and pirarucu (Osteoglossidae), and the African butterfly fish (Pantodontidae). This morphologically heterogeneous group also has a long and diverse fossil record, including taxa from all continents and both freshwater and marine deposits. The phylogenetic relationships among most extant osteoglossomorph families are widely agreed upon. However, there is still much to discover about the systematic biology of these fishes, particularly with regard to the phylogenetic affinities of several fossil taxa, within Mormyridae, and the position of Pantodon. In this paper we review the state of knowledge for osteoglossomorph fishes. We first provide an overview of the diversity of Osteoglossomorpha, and then discuss studies of the phylogeny of Osteoglossomorpha from both morphological and molecular perspectives, as well as biogeographic analyses of the group. Finally, we offer our perspectives on future needs for research on the systematic biology of Osteoglossomorpha
Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA
Population biology of Streptococcus pneumoniae in West Africa: multilocus sequence typing of serotypes that exhibit different predisposition to invasive disease and carriage.
BACKGROUND: Little is known about the population biology of Streptococcus pneumoniae in developing countries, although the majority of pneumococcal infections occur in this setting. The aim of the study was to apply MLST to investigate the population biology of S. pneumoniae in West Africa. METHODS: Seventy three invasive and carriage S. pneumoniae isolates from three West African countries including The Gambia, Nigeria and Ghana were investigated. The isolates covered seven serotypes (1, 3, 5, 6A, 11, 14, 23F) and were subjected to multilocus sequence typing and antibiotic susceptibility testing. RESULTS: Overall, 50 different sequence types (STs) were identified, of which 38% (29) were novel. The most common ST was a novel clone-ST 4012 (6.5%), and some clones including STs 913, 925, 1737, 2160 and 3310 appeared to be specific to the study region. Two STs including ST 63 and ST 4012 were associated with multiple serotypes indicating a history of serotype switching. ST 63 was associated with serotypes 3 and 23F, while ST 4012 was associated with serotypes 6A and 23. eBURST analyses using the stringent 6/7 identical loci definition grouped the 50 STs into 5 clonal complexes and 65 singletons, expressing a high level of genetic diversity among the isolates. Compared to the other serotypes, serotypes 1 and 5 isolates appeared to be more clonal. Internationally recognized antibiotic resistant clones of S. pneumoniae were generally absent in the population investigated and the only multidrug resistant isolate identified (1/66) belong to the Pneumocococcal Epidemiology Network clone ST 63. CONCLUSIONS: The pneumococcal population in West Africa is quite divergent, and serotypes that are common in invasive disease (such as serotypes 1 and 5) are more likely to be clonal than serotypes that are common in carriage