6 research outputs found

    Assessment of potential effects of the electromagnetic fields of mobile phones on hearing

    Get PDF
    BACKGROUND: Mobile phones have become indispensable as communication tools; however, to date there is only a limited knowledge about interaction between electromagnetic fields (EMF) emitted by mobile phones and auditory function. The aim of the study was to assess potential changes in hearing function as a consequence of exposure to low-intensity EMF's produced by mobile phones at frequencies of 900 and 1800 MHz. METHODS: The within-subject study was performed on thirty volunteers (age 18–30 years) with normal hearing to assess possible acute effect of EMF. Participants attended two sessions: genuine and sham exposure of EMF. Hearing threshold levels (HTL) on pure tone audiometry (PTA) and transient evoked otoacoustic emissions (TEOAE's) were recorded before and immediately after 10 min of genuine and/or sham exposure of mobile phone EMF. The administration of genuine or sham exposure was double blind and counterbalanced in order. RESULTS: Statistical analysis revealed no significant differences in the mean HTLs of PTA and mean shifts of TEOAE's before and after genuine and/or sham mobile phone EMF 10 min exposure. The data collected showed that average TEOAE levels (averaged across a frequency range) changed less than 2.5 dB between pre- and post-, genuine and sham exposure. The greatest individual change was 10 dB, with a decrease in level from pre- to post- real exposure. CONCLUSION: It could be concluded that a 10-min close exposure of EMFs emitted from a mobile phone had no immediate after-effect on measurements of HTL of PTA and TEOAEs in young human subjects and no measurable hearing deterioration was detected in our study

    Reduced P2x2 receptor-mediated regulation of endocochlear potential in the ageing mouse cochlea

    No full text
    Extracellular adenosine triphosphate (ATP) has profound effects on the cochlea, including an effect on the regulation of the endocochlear potential (EP). Noise-induced release of ATP into the endolymph activates a shunt conductance mediated by P2X2 receptors in tissues lining the endolymphatic compartment, which reduces the EP and, consequentially, hearing sensitivity. This may be a mechanism of adaptation or protection from high sound levels. As inaction of such a process could contribute to hearing loss, this study examined whether the action of ATP on EP changes with age and noise exposure in the mouse. The EP and the endolymphatic compartment resistance (CoPR) were measured in mice (CBA/CaJ) aged between 3 and 15 months. The EP and CoPR declined slightly with age with an associated small, but significant, reduction in auditory brainstem response thresholds. ATP (100–1,000 μM) microinjected into the endolymphatic compartment caused a dose-dependent decline in EP correlated to a similar decrease in CoPR. This was blocked by pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonate, consistent with a P2X2 receptor-mediated shunt conductance. There was no substantial difference in the ATP response with age. Noise exposure (octave-band noise 80–100 decibels sound pressure level (dBSPL), 48 h) in young animals induced an upregulation of the P2X2 receptor expression in the organ of Corti and spiral limbus, most noticeably with the 90-dB exposure. This did not occur in the aged animals except following exposure at 90 dBSPL. The EP response to ATP was muted in the noise-exposed aged animals except following the 90-dB exposure. These findings provide some evidence that the adaptive response of the cochlea to noise may be reduced in older animals, and it is speculated that this could increase their susceptibility to noise-induced injury

    Homeostatic Mechanisms in the Cochlea

    No full text

    Physiology of the Developing Kidney: Fluid and Electrolyte Homeostasis and Therapy of Basic Disorders (Na/H2O/K/Acid Base)

    No full text
    corecore