86 research outputs found

    Fulvestrant: an oestrogen receptor antagonist with a novel mechanism of action

    Get PDF
    Due to their favourable tolerability profiles, endocrine therapies have long been considered the treatment of choice for hormone-sensitive metastatic breast cancer. However, the oestrogen agonist effects of the available selective oestrogen receptor modulators, such as tamoxifen, and the development of cross-resistance between endocrine therapies with similar modes of action have led to the need for new treatments that act through different mechanisms. Fulvestrant (‘Faslodex’) is the first of a new type of endocrine treatment – an oestrogen receptor (ER) antagonist that downregulates the ER and has no agonist effects. This article provides an overview of the current understanding of ER signalling and illustrates the unique mode of action of fulvestrant. Preclinical and clinical study data are presented in support of the novel mechanism of action of this new type of ER antagonist

    Differential DNA methylation profiles in gynecological cancers and correlation with clinico-pathological data

    Get PDF
    BACKGROUND: Epigenetic gene silencing is one of the major causes of carcinogenesis. Its widespread occurrence in cancer genome could inactivate many cellular pathways including DNA repair, cell cycle control, apoptosis, cell adherence, and detoxification. The abnormal promoter methylation might be a potential molecular marker for cancer management. METHODS: For rapid identification of potential targets for aberrant methylation in gynecological cancers, methylation status of the CpG islands of 34 genes was determined using pooled DNA approach and methylation-specific PCR. Pooled DNA mixture from each cancer type (50 cervical cancers, 50 endometrial cancers and 50 ovarian cancers) was made to form three test samples. The corresponding normal DNA from the patients of each cancer type was also pooled to form the other three control samples. Methylated alleles detected in tumors, but not in normal controls, were indicative of aberrant methylation in tumors. Having identified potential markers, frequencies of methylation were further analyzed in individual samples. Markers identified are used to correlate with clinico-pathological data of tumors using χ(2 )or Fisher's exact test. RESULTS: APC and p16 were hypermethylated across the three cancers. MINT31 and PTEN were hypermethylated in cervical and ovarian cancers. Specific methylation was found in cervical cancer (including CDH1, DAPK, MGMT and MINT2), endometrial cancer (CASP8, CDH13, hMLH1 and p73), and ovarian cancer (BRCA1, p14, p15, RIZ1 and TMS1). The frequencies of occurrence of hypermethylation in 4 candidate genes in individual samples of each cancer type (DAPK, MGMT, p16 and PTEN in 127 cervical cancers; APC, CDH13, hMLH1 and p16 in 60 endometrial cancers; and BRCA1, p14, p16 and PTEN in 49 ovarian cancers) were examined for further confirmation. Incidence varied among different genes and in different cancer types ranging from the lowest 8.2% (PTEN in ovarian cancer) to the highest 56.7% (DAPK in cervical cancer). Aberrant methylation for some genes (BRCA1, DAPK, hMLH1, MGMT, p14, p16, and PTEN) was also associated with clinico-pathological data. CONCLUSION: Thus, differential methylation profiles occur in the three types of gynecologic cancer. Detection of methylation for critical loci is potentially useful as epigenetic markers in tumor classification. More studies using a much larger sample size are needed to define the potential role of DNA methylation as marker for cancer management

    Serine Protease PRSS23 Is Upregulated by Estrogen Receptor α and Associated with Proliferation of Breast Cancer Cells

    Get PDF
    Serine protease PRSS23 is a newly discovered protein that has been associated with tumor progression in various types of cancers. Interestingly, PRSS23 is coexpressed with estrogen receptor α (ERα), which is a prominent biomarker and therapeutic target for human breast cancer. Estrogen signaling through ERα is also known to affect cell proliferation, apoptosis, and survival, which promotes tumorigenesis by regulating the production of numerous downstream effector proteins

    Epigenetic regulation of CD44 in Hodgkin and non-Hodgkin lymphoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epigenetic inactivation of tumor suppressor genes (TSG) by promoter CpG island hypermethylation is a hallmark of cancer. To assay its extent in human lymphoma, methylation of 24 TSG was analyzed in lymphoma-derived cell lines as well as in patient samples.</p> <p>Methods</p> <p>We screened for TSG methylation using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) in 40 lymphoma-derived cell lines representing anaplastic large cell lymphoma, Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), Hodgkin lymphoma and mantle cell lymphoma (MCL) as well as in 50 primary lymphoma samples. The methylation status of differentially methylated <it>CD44 </it>was verified by methylation-specific PCR and bisulfite sequencing. Gene expression of <it>CD44 </it>and its reactivation by DNA demethylation was determined by quantitative real-time PCR and on the protein level by flow cytometry. Induction of apoptosis by anti-CD44 antibody was analyzed by annexin-V/PI staining and flow cytometry.</p> <p>Results</p> <p>On average 8 ± 2.8 of 24 TSG were methylated per lymphoma cell line and 2.4 ± 2 of 24 TSG in primary lymphomas, whereas 0/24 TSG were methylated in tonsils and blood mononuclear cells from healthy donors. Notably, we identified that <it>CD44 </it>was hypermethylated and transcriptionally silenced in all BL and most FL and DLBCL cell lines, but was usually unmethylated and expressed in MCL cell lines. Concordant results were obtained from primary lymphoma material: <it>CD44 </it>was not methylated in MCL patients (0/11) whereas <it>CD44 </it>was frequently hypermethylated in BL patients (18/29). In cell lines with <it>CD44 </it>hypermethylation, expression was re-inducible at mRNA and protein levels by treatment with the DNA demethylating agent 5-Aza-2'-deoxycytidine, confirming epigenetic regulation of <it>CD44</it>. CD44 ligation assays with a monoclonal anti-CD44 antibody showed that CD44 can mediate apoptosis in CD44<sup>+ </sup>lymphoma cells. <it>CD44 </it>hypermethylated, CD44<sup>- </sup>lymphoma cell lines were consistently resistant towards anti-CD44 induced apoptosis.</p> <p>Conclusion</p> <p>Our data show that <it>CD44 </it>is epigenetically regulated in lymphoma and undergoes <it>de novo </it>methylation in distinct lymphoma subtypes like BL. Thus <it>CD44 </it>may be a promising new epigenetic marker for diagnosis and a potential therapeutic target for the treatment of specific lymphoma subtypes.</p
    • …
    corecore