4,533 research outputs found
A coarse-grained biophysical model of sequence evolution and the population size dependence of the speciation rate.
Speciation is fundamental to understanding the huge diversity of life on Earth. Although still controversial, empirical evidence suggests that the rate of speciation is larger for smaller populations. Here, we explore a biophysical model of speciation by developing a simple coarse-grained theory of transcription factor-DNA binding and how their co-evolution in two geographically isolated lineages leads to incompatibilities. To develop a tractable analytical theory, we derive a Smoluchowski equation for the dynamics of binding energy evolution that accounts for the fact that natural selection acts on phenotypes, but variation arises from mutations in sequences; the Smoluchowski equation includes selection due to both gradients in fitness and gradients in sequence entropy, which is the logarithm of the number of sequences that correspond to a particular binding energy. This simple consideration predicts that smaller populations develop incompatibilities more quickly in the weak mutation regime; this trend arises as sequence entropy poises smaller populations closer to incompatible regions of phenotype space. These results suggest that a generic coarse-grained approach to evolutionary stochastic dynamics allows realistic modelling at the phenotypic level
Nonadaptive Amino Acid Convergence Rates Decrease over Time.
Convergence is a central concept in evolutionary studies because it provides strong evidence for adaptation. It also provides information about the nature of the fitness landscape and the repeatability of evolution, and can mislead phylogenetic inference. To understand the role of adaptive convergence, we need to understand the patterns of nonadaptive convergence. Here, we consider the relationship between nonadaptive convergence and divergence in mitochondrial and model proteins. Surprisingly, nonadaptive convergence is much more common than expected in closely related organisms, falling off as organisms diverge. The extent of the convergent drop-off in mitochondrial proteins is well predicted by epistatic or coevolutionary effects in our "evolutionary Stokes shift" models and poorly predicted by conventional evolutionary models. Convergence probabilities decrease dramatically if the ancestral amino acids of branches being compared have diverged, but also drop slowly over evolutionary time even if the ancestral amino acids have not substituted. Convergence probabilities drop-off rapidly for quickly evolving sites, but much more slowly for slowly evolving sites. Furthermore, once sites have diverged their convergence probabilities are extremely low and indistinguishable from convergence levels at randomized sites. These results indicate that we cannot assume that excessive convergence early on is necessarily adaptive. This new understanding should help us to better discriminate adaptive from nonadaptive convergence and develop more relevant evolutionary models with improved validity for phylogenetic inference
Simple Biophysical Model Predicts Faster Accumulation of Hybrid Incompatibilities in Small Populations Under Stabilizing Selection
Speciation is fundamental to the process of generating the huge diversity of life on Earth. However, we are yet to have a clear understanding of its molecular-genetic basis. Here, we examine a computational model of reproductive isolation that explicitly incorporates a map from genotype to phenotype based on the biophysics of protein-DNA binding. In particular, we model the binding of a protein transcription factor to a DNA binding site and how their independent coevolution, in a stabilizing fitness landscape, of two allopatric lineages leads to incompatibilities. Complementing our previous coarse-grained theoretical results, our simulations give a new prediction for the monomorphic regime of evolution that smaller populations should develop incompatibilities more quickly. This arises as (1) smaller populations have a greater initial drift load, as there are more sequences that bind poorly than well, so fewer substitutions are needed to reach incompatible regions of phenotype space, and (2) slower divergence when the population size is larger than the inverse of discrete differences in fitness. Further, we find longer sequences develop incompatibilities more quickly at small population sizes, but more slowly at large population sizes. The biophysical model thus represents a robust mechanism of rapid reproductive isolation for small populations and large sequences that does not require peak shifts or positive selection. Finally, we show that the growth of DMIs with time is quadratic for small populations, agreeing with Orr's model, but nonpower law for large populations, with a form consistent with our previous theoretical results
Differences in clinicopathologic variables between Borrelia C6 antigen seroreactive and Borrelia C6 seronegative glomerulopathy in dogs.
BackgroundRapidly progressive glomerulonephritis has been described in dogs that seroreact to Borrelia burgdorferi, but no studies have compared clinicopathologic differences in Lyme-seroreactive dogs with protein-losing nephropathy (PLN) versus dogs with Borrelia-seronegative PLN.Hypothesis/objectivesDogs with Borrelia C6 antigen-seroreactive PLN have distinct clinicopathologic findings when compared to dogs with Borrelia seronegative PLN.AnimalsForty dogs with PLN and Borrelia C6 antigen seroreactivity and 78 C6-seronegative temporally matched dogs with PLN.MethodsRetrospective prevalence case-control study. Clinical information was retrieved from records of dogs examined at the University of California, Davis, Veterinary Medical Teaching Hospital. Histopathologic findings in renal tissue procured by biopsy or necropsy of dogs with PLN were reviewed.ResultsRetrievers and retriever mixes were overrepresented in seroreactive dogs (P < .001). Seroreactive dogs were more likely to have thrombocytopenia (P < .001), azotemia (P = .002), hyperphosphatemia (P < .001), anemia (P < .001), and neutrophilia (P = .003). Hematuria, glucosuria, and pyuria despite negative urine culture were more likely in seroreactive dogs (all P ≤ .002). Histopathologic findings were consistent with immune-complex glomerulonephritis in 16 of 16 case dogs and 7 of 23 control dogs (P = 006). Prevalence of polyarthritis was not different between groups (P = .17).Conclusions and clinical importanceC6 seroreactivity in dogs with PLN is associated with a clinicopathologically distinct syndrome when compared with other types of PLN. Early recognition of this syndrome has the potential to improve outcomes through specific aggressive and early treatment
Selection for cooperativity causes epistasis predominately between native contacts and enables epistasis-based structure reconstruction
We investigated the relationship between cooperativity and epistasis and found low cooperativity results in high epistasis between nonnative contacts, whereas high cooperatively results in epistasis mainly between native contacts. This provides a mechanistic explanation for why epistasis measurements can be used to reconstruct protein structure. The structure of GB1 protein has been successfully reconstructed using epistasis measurements, and we calculated its epistasis distribution for a cooperative and a noncooperative model. The structure of the native state is clearly mapped out in the cooperative model but becomes obscured in the noncooperative model due to the presence of a folding intermediate. We thus conclude that using epistasis measurements to reconstruct the native state of proteins with stable intermediates may not be appropriate
Population size dependence of fitness effect distribution and substitution rate probed by biophysical model of protein thermostability
The predicted effect of effective population size on the distribution of fitness effects and substitution rate is critically dependent on the relationship between sequence and fitness. This highlights the importance of using models that are informed by the molecular biology, biochemistry, and biophysics of the evolving systems. We describe a computational model based on fundamental aspects of biophysics, the requirement for (most) proteins to be thermodynamically stable. Using this model, we find that differences in population size have minimal impact on the distribution of population scaled fitness effects, as well as on the rate of molecular evolution. This is because larger populations result in selection for more stable proteins that are less affected by mutations. This reduction in the magnitude of the fitness effects almost exactly cancels the greater selective pressure resulting from the larger population size. Conversely, changes in the population size in either direction cause transient increases in the substitution rate. As differences in population size often correspond to changes in population size, this makes comparisons of substitution rates in different lineages difficult to interpret
2010 ACVIM Small Animal Consensus Statement on Leptospirosis: Diagnosis, Epidemiology, Treatment, and Prevention
This report offers a consensus opinion on the diagnosis, epidemiology, treatment, and prevention of leptospirosis in dogs, an important zoonosis. Clinical signs of leptospirosis in dogs relate to development of renal disease, hepatic disease, uveitis, and pulmonary hemorrhage. Disease may follow periods of high rainfall, and can occur in dogs roaming in proximity to water sources, farm animals, or wildlife, or dogs residing in suburban environments. Diagnosis is based on acute and convalescent phase antibody titers by the microscopic agglutination test (MAT), with or without use of polymerase chain reaction assays. There is considerable interlaboratory variation in MAT results, and the MAT does not accurately predict the infecting serogroup. The recommended treatment for optimal clearance of the organism from renal tubules is doxycycline, 5 mg/kg PO q12h, for 14 days. Annual vaccination can prevent leptospirosis caused by serovars included in the vaccine and is recommended for dogs at risk of infection
Haplotype assignment of longitudinal viral deep sequencing data using covariation of variant frequencies.
Longitudinal deep sequencing of viruses can provide detailed information about intra-host evolutionary dynamics including how viruses interact with and transmit between hosts. Many analyses require haplotype reconstruction, identifying which variants are co-located on the same genomic element. Most current methods to perform this reconstruction are based on a high density of variants and cannot perform this reconstruction for slowly evolving viruses. We present a new approach, HaROLD (HAplotype Reconstruction Of Longitudinal Deep sequencing data), which performs this reconstruction based on identifying co-varying variant frequencies using a probabilistic framework. We illustrate HaROLD on both RNA and DNA viruses with synthetic Illumina paired read data created from mixed human cytomegalovirus (HCMV) and norovirus genomes, and clinical datasets of HCMV and norovirus samples, demonstrating high accuracy, especially when longitudinal samples are available
Designing an automated clinical decision support system to match clinical practice guidelines for opioid therapy for chronic pain
Abstract Background Opioid prescribing for chronic pain is common and controversial, but recommended clinical practices are followed inconsistently in many clinical settings. Strategies for increasing adherence to clinical practice guideline recommendations are needed to increase effectiveness and reduce negative consequences of opioid prescribing in chronic pain patients. Methods Here we describe the process and outcomes of a project to operationalize the 2003 VA/DOD Clinical Practice Guideline for Opioid Therapy for Chronic Non-Cancer Pain into a computerized decision support system (DSS) to encourage good opioid prescribing practices during primary care visits. We based the DSS on the existing ATHENA-DSS. We used an iterative process of design, testing, and revision of the DSS by a diverse team including guideline authors, medical informatics experts, clinical content experts, and end-users to convert the written clinical practice guideline into a computable algorithm to generate patient-specific recommendations for care based upon existing information in the electronic medical record (EMR), and a set of clinical tools. Results The iterative revision process identified numerous and varied problems with the initially designed system despite diverse expert participation in the design process. The process of operationalizing the guideline identified areas in which the guideline was vague, left decisions to clinical judgment, or required clarification of detail to insure safe clinical implementation. The revisions led to workable solutions to problems, defined the limits of the DSS and its utility in clinical practice, improved integration into clinical workflow, and improved the clarity and accuracy of system recommendations and tools. Conclusions Use of this iterative process led to development of a multifunctional DSS that met the approval of the clinical practice guideline authors, content experts, and clinicians involved in testing. The process and experiences described provide a model for development of other DSSs that translate written guidelines into actionable, real-time clinical recommendations.http://deepblue.lib.umich.edu/bitstream/2027.42/78267/1/1748-5908-5-26.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/2/1748-5908-5-26.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/3/1748-5908-5-26-S3.TIFFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/4/1748-5908-5-26-S2.TIFFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/5/1748-5908-5-26-S1.TIFFPeer Reviewe
Wide variation in susceptibility of transmitted/founder HIV-1 subtype C Isolates to protease inhibitors and association with in vitro replication efficiency
© 2016 The Author(s).The gag gene is highly polymorphic across HIV-1 subtypes and contributes to susceptibility to protease inhibitors (PI), a critical class of antiretrovirals that will be used in up to 2 million individuals as second-line therapy in sub Saharan Africa by 2020. Given subtype C represents around half of all HIV-1 infections globally, we examined PI susceptibility in subtype C viruses from treatment-naïve individuals. PI susceptibility was measured in a single round infection assay of full-length, replication competent MJ4/gag chimeric viruses, encoding the gag gene and 142 nucleotides of pro derived from viruses in 20 patients in the Zambia-Emory HIV Research Project acute infection cohort. Ten-fold variation in susceptibility to PIs atazanavir and lopinavir was observed across 20 viruses, with EC50 s ranging 0.71-6.95 nM for atazanvir and 0.64-8.54 nM for lopinavir. Ten amino acid residues in Gag correlated with lopinavir EC50 (p < 0.01), of which 380 K and 389I showed modest impacts on in vitro drug susceptibility. Finally a significant relationship between drug susceptibility and replication capacity was observed for atazanavir and lopinavir but not darunavir. Our findings demonstrate large variation in susceptibility of PI-naïve subtype C viruses that appears to correlate with replication efficiency and could impact clinical outcomes
- …