11 research outputs found
Transcriptomic analysis of the temporal host response to skin infestation with the ectoparasitic mite Psoroptes ovis
<p>Abstract</p> <p>Background</p> <p>Infestation of ovine skin with the ectoparasitic mite <it>Psoroptes ovis </it>results in a rapid cutaneous immune response, leading to the crusted skin lesions characteristic of sheep scab. Little is known regarding the mechanisms by which such a profound inflammatory response is instigated and to identify novel vaccine and drug targets a better understanding of the host-parasite relationship is essential. The main objective of this study was to perform a combined network and pathway analysis of the <it>in vivo </it>skin response to infestation with <it>P. ovis </it>to gain a clearer understanding of the mechanisms and signalling pathways involved.</p> <p>Results</p> <p>Infestation with <it>P. </it>ovis resulted in differential expression of 1,552 genes over a 24 hour time course. Clustering by peak gene expression enabled classification of genes into temporally related groupings. Network and pathway analysis of clusters identified key signalling pathways involved in the host response to infestation. The analysis implicated a number of genes with roles in allergy and inflammation, including pro-inflammatory cytokines (<it>IL1A, IL1B, IL6, IL8 </it>and <it>TNF</it>) and factors involved in immune cell activation and recruitment (<it>SELE, SELL, SELP, ICAM1, CSF2, CSF3, CCL2 </it>and <it>CXCL2</it>). The analysis also highlighted the influence of the transcription factors NF-kB and AP-1 in the early pro-inflammatory response, and demonstrated a bias towards a Th2 type immune response.</p> <p>Conclusions</p> <p>This study has provided novel insights into the signalling mechanisms leading to the development of a pro-inflammatory response in sheep scab, whilst providing crucial information regarding the nature of mite factors that may trigger this response. It has enabled the elucidation of the temporal patterns by which the immune system is regulated following exposure to <it>P. ovis</it>, providing novel insights into the mechanisms underlying lesion development. This study has improved our existing knowledge of the host response to <it>P. ovis</it>, including the identification of key parallels between sheep scab and other inflammatory skin disorders and the identification of potential targets for disease control.</p
Interleukine-8 Acts as a Strong Peripheral Blood Granulocyte-Recruiting Agent Rather Than as a Hematopoietic Progenitor Cell-Mobilizing Factor
Sputum Antineutrophil Cytoplasmic Antibodies in Serum Antineutrophil Cytoplasmic Antibody–Negative Eosinophilic Granulomatosis with Polyangiitis
Bronchoalveolar lavage eosinophil cationic protein and interleukin-8 levels in acute asthma and acute bronchiolitis
OBJECTIVE: In this study, we measured the levels of eosinophil cationic protein (ECP) and interleukin (IL)-8 in bronchoalveolar lavage (BAL) fluid from patients with acute asthma and acute bronchiolitis, to determine any similarities or dissimilarities in the profiles of these biochemical markers in the two diseases. METHODS: BAL fluids were obtained from children with acute asthma (n=16), infants with acute bronchiolitis caused by respiratory syncytial virus (n=18), and control subjects (n=14). Children with asthma were selected to be free of viral infection. BAL cell counts and differentials were determined, and ECP and IL-8 levels were measured by radioimmunoassay and ELISA, respectively. RESULTS: ECP levels in BAL fluids were significantly higher in the asthma group than in the bronchiolitis (P<0.01) or control (P<0.0001) groups. However, IL-8 levels were significantly higher in the bronchiolitis group than in the asthma (P<0.01) or control (P<0.001) groups. IL-8 levels in the asthma group and ECP levels in the bronchiolitis group were similar to those of the control group. CONCLUSION: This difference in profiles of ECP and IL-8 in acute asthma and acute bronchiolitis, together with a different inflammatory cell pattern, suggests that the nature of the inflammatory process within the lower respiratory tract may be distinctive in these two diseases
