38 research outputs found

    Combating the effects of climatic change on forests by mitigation strategies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Forests occur across diverse biomes, each of which shows a specific composition of plant communities associated with the particular climate regimes. Predicted future climate change will have impacts on the vulnerability and productivity of forests; in some regions higher temperatures will extend the growing season and thus improve forest productivity, while changed annual precipitation patterns may show disadvantageous effects in areas, where water availability is restricted. While adaptation of forests to predicted future climate scenarios has been intensively studied, less attention was paid to mitigation strategies such as the introduction of tree species well adapted to changing environmental conditions.</p> <p>Results</p> <p>We simulated the development of managed forest ecosystems in Germany for the time period between 2000 and 2100 under different forest management regimes and climate change scenarios. The management regimes reflect different rotation periods, harvesting intensities and species selection for reforestations. The climate change scenarios were taken from the IPCC's Special Report on Emission Scenarios (SRES). We used the scenarios A1B (rapid and successful economic development) and B1 (high level of environmental and social consciousness combined with a globally coherent approach to a more sustainable development). Our results indicate that the effects of different climate change scenarios on the future productivity and species composition of German forests are minor compared to the effects of forest management.</p> <p>Conclusions</p> <p>The inherent natural adaptive capacity of forest ecosystems to changing environmental conditions is limited by the long life time of trees. Planting of adapted species and forest management will reduce the impact of predicted future climate change on forests.</p

    The American Astronomical Society, find out more The Institute of Physics, find out more The Sixth Data Release of the Radial Velocity Experiment (Rave). II. Stellar Atmospheric Parameters, Chemical Abundances, and Distances

    Get PDF
    We present part 2 of the 6th and final Data Release (DR6 or FDR) of the Radial Velocity Experiment (RAVE), a magnitude-limited (9<I<12) spectroscopic survey of Galactic stars randomly selected in the southern hemisphere. The RAVE medium-resolution spectra (R~7500) cover the Ca-triplet region (8410-8795A) and span the complete time frame from the start of RAVE observations on 12 April 2003 to their completion on 4 April 2013. In the second of two publications, we present the data products derived from 518387 observations of 451783 unique stars using a suite of advanced reduction pipelines focussing on stellar atmospheric parameters, in particular purely spectroscopically derived stellar atmospheric parameters (Teff, log(g), and the overall metallicity), enhanced stellar atmospheric parameters inferred via a Bayesian pipeline using Gaia DR2 astrometric priors, and asteroseismically calibrated stellar atmospheric parameters for giant stars based on asteroseismic observations for 699 K2 stars. In addition, we provide abundances of the elements Fe, Al, and Ni, as well as an overall [alpha/Fe] ratio obtained using a new pipeline based on the GAUGUIN optimization method that is able to deal with variable signal-to-noise ratios. The RAVE DR6 catalogs are cross matched with relevant astrometric and photometric catalogs, and are complemented by orbital parameters and effective temperatures based on the infrared flux method. The data can be accessed via the RAVE Web site (http://rave-survey.org) or the Vizier database

    Subthreshold Electrical Stimulation for Controlling Protein-Mediated Impedance Increases in Platinum Cochlear Electrode

    Full text link
    Objective: This study evaluated subthreshold biphasic stimulation pulses as a strategy to stabilize electrode impedance via control of protein adsorption. Following implantation, cochlear electrodes undergo impedance fluctuations thought to be caused by protein adsorption and/or inflammatory responses. Impedance increases can impact device power consumption, safe charge injection limits, and long-term stability of electrodes. Methods: Protein-mediated changes in polarization impedance (Zp) were measured by voltage transient responses to biphasic current pulses and electrochemical impedance spectroscopy, with and without protein solutions. Four subthreshold stimulation regimes were studied to assess their effects on protein adsorption and impedance; (1) symmetric charge-balanced pulses delivered continuously, (2) at 10% duty cycle, (3) at 1% duty cycle, and (4) an asymmetric charge balanced pulse delivered continuously with a cathodic phase twice as long as the anodic phase. Results: The Zp of electrodes incubated in protein solutions without stimulation for 2 h increased by between ∼28% and ∼55%. Subthreshold stimulation reduced the rate at which impedance increased following exposure to all protein solutions. Decreases in Zp were dependent on the type of protein solution and the stimulation regime. Subthreshold stimulation pulses were more effective when delivered continuously compared to 1% and 10% duty cycles. Conclusion: These results support the potential of subthreshold stimulation pulses to mitigate protein-mediated increase in impedance. Significance: This research highlights the potential of clinically translatable stimulation pulses to mitigate perilymph protein adsorption on cochlear electrodes, a key phenomenon precursor of the inflammatory response

    Development and performance of a biomimetic artificial perilymph for in vitro testing of medical devices

    No full text
    Objective. Cochlear implants interface with the fluid in the cochlea called perilymph. The volume of this fluid present in human and animal model cochlea is prohibitively low for isolation for in vitro studies. Thus, there is a need for an artificial perilymph that reflects the complexity of this fluid in terms of competitive protein adsorption. Approach. This study established a biomimetic artificial perilymph (BAP) comprising serum albumin, immunoglobulin G, transferrin, inter-alpha-trypsin inhibitor, apolipoprotein A1 and complement C3 to represent the major components of human perilymph. Adsorption of the BAP components to platinum was analysed. Main results. It was established that this six component BAP provided competitive and complex adsorption behaviours consistent with biologically derived complex fluids. Additionally, adsorption of the BAP components to platinum cochlear electrodes resulted in a change in polarisation impedance consistent with that observed for the cochlear device in vivo. Significance. This study established a BAP fluid suitable for furthering the understanding of the implant environment for electroactive devices that interface with the biological environment

    Comparing perilymph proteomes across species

    Full text link
    Objectives/Hypothesis: Biological components of perilymph affect the electrical performance of cochlear implants. Understanding the perilymph composition of common animal models will improve the understanding of this impact and improve the interpretation of results from animal studies and how it relates to humans. Study Design: Analysis and comparison of the proteomes of human, guinea pig, and cat perilymph. Methods: Multiple perilymph samples from both guinea pigs and cats were analysed via liquid chromatography with tandem mass spectrometry. Proteins were identified using the Mascot database. Human data were obtained from a published dataset. Proteins identified were refined to form a proteome for each species. Results: Over 200 different proteins were found per species. There were 81, 39, and 64 proteins in the final human, guinea pig, and cat proteomes, respectively. Twenty-one proteins were common to all three species. Fifty-two percent of the cat proteome was found in the human proteome, and 31% of the guinea pig was common to human. The cat proteome had similar complexity to the human proteome in three protein classes, whereas the guinea pig had a similar complexity in two. The presence of albumin was significantly higher in human perilymph than in the other two species. Immunoglobulins were more abundant in the human than in the cat proteome. Conclusions: Perilymph proteomes were compared across three species. The degree of crossover of proteins of both guinea pig and cat with human indicate that these animals suitable models for the human cochlea, albeit the cat perilymph is a closer match. Level of Evidence: NA. Laryngoscope, 128:E47–E52, 2018

    Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS

    No full text
    Cochlear implants operate within a bony channel of the cochlea, bathed in a fluid known as the perilymph. The perilymph is a complex fluid containing ions and proteins, which are known to actively interact with metallic electrodes. To improve our understanding of how cochlear implant performance varies in preclinical in vivo studies in comparison to human trials and patient outcomes, the protein composition (or perilymph proteome) is needed. Samples of perilymph were gathered from feline and Guinea pig subjects and analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS) to produce proteomes and compare against the recently published human proteome. Over 64% of the proteins in the Guinea pig proteome were found to be common to the human proteome. The proportions of apolipoproteins, enzymes and immunoglobulins showed little variation between the two proteomes, with other classes showing similarity. This establishes a good basis for comparison of results. The results for the feline profile showed less similarity with the human proteome and would not provide a quality comparison. This work highlights the suitability of the Guinea pig to model the biological environment of the human cochlear and the need to carefully select models of the biological environment of a cochlear implant to more adequately translate in vitro and in vivo studies to the clinic
    corecore