115 research outputs found

    The Role of Phosphatidic Acid and Cardiolipin in Stability of the Tetrameric Assembly of Potassium Channel KcsA

    Get PDF
    In this study, the roles of two anionic phospholipids—phosphatidic acid (PA), which is an important signaling molecule, and cardiolipin (CL), which plays a crucial role in the bioenergetics of the cell—in stabilizing the oligomeric structure of potassium channel KcsA were determined. The stability of KcsA was drastically increased as a function of PA or CL content (mol%) in phosphatidylcholine (PC) bilayers. Deletion of the membrane-associated N terminus significantly reduced channel stability at high levels of PA content; however, the intrinsic stability of this protein was marginally affected in the presence of CL. These studies indicate that the electrostatic-hydrogen bond switch between PA and N terminus, involving basic residues, is much stronger than the stabilizing effect of CL. Furthermore, the unique properties of the PA headgroup alter protein assembly and folding properties differently from the CL headgroup, and both lipids stabilize the tetrameric assembly via their specific interaction on the extra- or the intracellular side of KcsA

    The role of the disulfide bond in the interaction of islet amyloid polypeptide with membranes

    Get PDF
    Human islet amyloid polypeptide (hIAPP) forms amyloid fibrils in pancreatic islets of patients with type 2 diabetes mellitus. It has been suggested that the N-terminal part, which contains a conserved intramolecular disulfide bond between residues 2 and 7, interacts with membranes, ultimately leading to membrane damage and β-cell death. Here, we used variants of the hIAPP1–19 fragment and model membranes of phosphatidylcholine and phosphatidylserine (7:3, molar ratio) to examine the role of this disulfide in membrane interactions. We found that the disulfide bond has a minor effect on membrane insertion properties and peptide conformational behavior, as studied by monolayer techniques, 2H NMR, ThT-fluorescence, membrane leakage, and CD spectroscopy. The results suggest that the disulfide bond does not play a significant role in hIAPP–membrane interactions. Hence, the fact that this bond is conserved is most likely related exclusively to the biological activity of IAPP as a hormone

    An AFM study of solid-phase bilayers of unsaturated PC lipids and the lateral distribution of the transmembrane model peptide WALP23 in these bilayers

    Get PDF
    An altered lipid packing can have a large influence on the properties of the membrane and the lateral distribution of proteins and/or peptides that are associated with the bilayer. Here, it is shown by contact-mode atomic force microscopy that the surface topography of solid-phase bilayers of PC lipids with an unsaturated cis bond in their acyl chains shows surfaces with a large number of line-type packing defects, in contrast to the much smoother surfaces observed for saturated PC lipids. Di-n:1-PC (n = 20, 22, 24) and (16:0,18:1)-PC (POPC) were used. Next, the influence of an altered lipid environment on the lateral distribution of the single α-helical model peptide WALP23 was studied by incorporating the peptide in the bilayers of di-n:1-PC (n = 20, 22, 24) and (16:0,18:1)-PC unsaturated lipids. The presence of WALP23 leads to an increase in the number of packing defects but does not lead to the formation of the striated domains that were previously observed in bilayers of saturated PC lipids and WALP. This is ascribed to the less efficient lateral lipid packing of the unsaturated lipids, while the increase in packing defects is probably an indirect effect of the peptide. Finally, the fact that an altered lipid packing affects the distribution of WALP23 is also confirmed in an additional experiment where the solvent TFE (2,2,2-trifluorethanol) is added to bilayers of di-16:0-PC/WALP23. At 3.5 vol% TFE, the previous striated ordering of the peptide is abolished and replaced by loose lines

    Enantioselective Protein-Sterol Interactions Mediate Regulation of Both Prokaryotic and Eukaryotic Inward Rectifier K+ Channels by Cholesterol

    Get PDF
    Cholesterol is the major sterol component of all mammalian cell plasma membranes and plays a critical role in cell function and growth. Previous studies have shown that cholesterol inhibits inward rectifier K+ (Kir) channels, but have not distinguished whether this is due directly to protein-sterol interactions or indirectly to changes in the physical properties of the lipid bilayer. Using purified bacterial and eukaryotic Kir channels reconstituted into liposomes of controlled lipid composition, we demonstrate by 86Rb+ influx assays that bacterial Kir channels (KirBac1.1 and KirBac3.1) and human Kir2.1 are all inhibited by cholesterol, most likely by locking the channels into prolonged closed states, whereas the enantiomer, ent-cholesterol, does not inhibit these channels. These data indicate that cholesterol regulates Kir channels through direct protein-sterol interactions likely taking advantage of an evolutionarily conserved binding pocket

    Effect of cholesterol on the dipole potential of lipid membranes

    Get PDF
    The membrane dipole potential, ψd, is an electrical potential difference with a value typically in the range 150 – 350 mV (positive in the membrane interior) which is located in the lipid headgroup region of the membrane, between the linkage of the hydrocarbon chains to the phospholipid glycerol backbone and the adjacent aqueous solution. At its physiological level in animal plasma membranes (up to 50 mol%), cholesterol makes a significant contribution to ψd of approximately 65 mV; the rest arising from other lipid components of the membrane, in particular phospholipids. Via its effect on ψd, cholesterol may modulate the activity of membrane proteins. This could occur through preferential stabilization of protein conformational states. Based on its effect on ψd, cholesterol would be expected to favour protein conformations associated with a small local hydrophobic membrane thickness. Via its membrane condensing effect, which also produces an increase in ψd, cholesterol could further modulate interactions of polybasic cytoplasmic extensions of membrane proteins, in particular P-type ATPases, with anionic lipid headgroups on the membrane surface, thus leading to enhanced conformational stabilization effects and changes to ion pumping activity.Australian Research Counci

    Expression of Multiple Resistance Genes Enhances Tolerance to Environmental Stressors in Transgenic Poplar (Populus × euramericana ‘Guariento’)

    Get PDF
    Commercial and non-commercial plants face a variety of environmental stressors that often cannot be controlled. In this study, transgenic hybrid poplar (Populus × euramericana ‘Guariento’) harboring five effector genes (vgb, SacB, JERF36, BtCry3A and OC-I) were subjected to drought, salinity, waterlogging and insect stressors in greenhouse or laboratory conditions. Field trials were also conducted to investigate long-term effects of transgenic trees on insects and salt tolerance in the transformants. In greenhouse studies, two transgenic lines D5-20 and D5-21 showed improved growth, as evidenced by greater height and basal diameter increments and total biomass relative to the control plants after drought or salt stress treatments. The improved tolerance to drought and salt was primarily attributed to greater instantaneous water use efficiency (WUEi) in the transgenic trees. The chlorophyll concentrations tended to be higher in the transgenic lines under drought or saline conditions. Transformed trees in drought conditions accumulated more fructan and proline and had increased Fv/Fm ratios (maximum quantum yield of photosystem II) under waterlogging stress. Insect-feeding assays in the laboratory revealed a higher total mortality rate and lower exuviation index of leaf beetle [Plagiodera versicolora (Laicharting)] larvae fed with D5-21 leaves, suggesting enhanced insect resistance in the transgenic poplar. In field trials, the dominance of targeted insects on 2-year-old D5-21 transgenic trees was substantially lower than that of the controls, indicating enhanced resistance to Coleoptera. The average height and DBH (diameter at breast height) of 2.5-year-old transgenic trees growing in naturally saline soil were 3.80% and 4.12% greater than those of the control trees, but these increases were not significant. These results suggested that multiple stress-resistance properties in important crop tree species could be simultaneously improved, although additional research is needed to fully understand the relationships between the altered phenotypes and the function of each transgene in multigene transformants

    Mechanism of Action of Lipoprotein Lipase and Hepatic Triglyceride Lipase

    No full text
    corecore