2,210 research outputs found
Insulin resistance:Impact on therapeutic developments in diabetes
Insulin resistance has a broad pathogenic impact affecting metabolic, cardio-renal and other disease areas. Extensive studies to dissect the mechanisms of insulin resistance have provided valuable insights to shape current clinical awareness and advance therapeutic practice. However, the development of direct interventions against insulin resistance has been hindered by its complex and highly variable presentations, especially in type 2 diabetes. Among glucose-lowering agents, metformin and thiazolidinediones provide cellular actions that counter some effects of insulin resistance: reduced glucotoxicity and weight-lowering with antidiabetic therapies also improve insulin action, except that endogenously- or exogenously-created hyperinsulinaemia may partially compromise these benefits. Increasing awareness of the pervasiveness and damaging ramifications of insulin resistance heightens the need for more specifically targeted and more effective therapies
The Estrogenic Effect of Bisphenol A Disrupts Pancreatic β-Cell Function In Vivo and Induces Insulin Resistance
The function of the pancreatic β-cell is the storage and release of insulin, the main hormone involved in blood glucose homeostasis. The results in this article show that the widespread environmental contaminant bisphenol-A (BPA) imitates 17β-estradiol (E(2)) effects in vivo on blood glucose homeostasis through genomic and nongenomic pathways. The exposure of adult mice to a single low dose (10 μg/kg) of either E(2) or BPA induces a rapid decrease in glycemia that correlates with a rise of plasma insulin. Longer exposures to E(2) and BPA induce an increase in pancreatic β-cell insulin content in an estrogen-receptor–dependent manner. This effect is visible after 2 days of treatment and starting at doses as low as 10 μg/kg/day. After 4 days of treatment with either E(2) or BPA, these mice developed chronic hyperinsulinemia, and their glucose and insulin tolerance tests were altered. These experiments unveil the link between environmental estrogens and insulin resistance. Therefore, either abnormal levels of endogenous estrogens or environmental estrogen exposure enhances the risk of developing type 2 diabetes mellitus, hypertension, and dyslipidemia
Elevated Concentrations of Liver Enzymes and Ferritin Identify a New Phenotype of Insulin Resistance: Effect of Weight Loss After Gastric Banding
BACKGROUND: Several studies have associated elevated liver enzymes (LFTs), obesity, and type 2 diabetes (T2DM), and a link has been established between insulin resistance (IR) and elevated ferritin concentrations. We examined the relationship between LFTs, ferritin, and IR in morbid obese subjects and the effect of weight loss after bariatric surgery. METHODS: We measured liver enzymes, ferritin, insulin resistance, and glucose tolerance (by OGTT) in 159 morbid obese subjects (BMI = 44.4 +/- 0.4 kg/m(2)) at baseline, 6 months and 1 year after laparoscopic-adjustable-gastric banding (LAGB). Subjects were divided in two groups: increased LFTs (ALT > 30; AST/ALT < 1) vs. normal LFTs. RESULTS: A large proportion of morbid obese subjects had increased LFTs (44%) which were associated with increased IR and ferritin, suggesting potential liver disease. A majority of the morbidly obese with increased LFTs, IGT, and T2DM, were male and had almost double ferritin concentrations, strongly correlated with ALT (r = 0.43, p < 0.0001). Both ferritin and ALT correlated with waist circumference and IR. One year after, LAGB glucose tolerance improved, LFTs and IR were reduced; ferritin did not change significantly, but was still correlated with IR. CONCLUSIONS: Ferritin may be an additional useful marker for more severe hepatic IR
Obesity-induced insulin resistance in human skeletal muscle is characterised by defective activation of p42/p44 MAP kinase
Insulin resistance (IR), an impaired cellular, tissue and whole body response to insulin, is a major pathophysiological defect of type 2 diabetes mellitus. Although IR is closely associated with obesity, the identity of the molecular defect(s) underlying obesity-induced IR in skeletal muscle remains controversial; reduced post-receptor signalling of the insulin receptor substrate 1 (IRS1) adaptor protein and downstream effectors such as protein kinase B (PKB) have previously been implicated. We examined expression and/or activation of a number of components of the insulin-signalling cascade in skeletal muscle of 22 healthy young men (with body mass index (BMI) range, 20–37 kg/m2). Whole body insulin sensitivity (M value) and body composition was determined by the hyperinsulinaemic (40 mU. min−1.m−2.), euglycaemic clamp and by dual energy X-ray absorptiometry (DEXA) respectively. Skeletal muscle (vastus lateralis) biopsies were taken before and after one hour of hyperinsulinaemia and the muscle insulin signalling proteins examined by western blot and immunoprecipitation assay. There was a strong inverse relationship between M-value and BMI. The most striking abnormality was significantly reduced insulin-induced activation of p42/44 MAP kinase, measured by specific assay, in the volunteers with poor insulin sensitivity. However, there was no relationship between individuals' BMI or M-value and protein expression/phosphorylation of IRS1, PKB, or p42/44 MAP kinase protein, under basal or hyperinsulinaemic conditions. In the few individuals with poor insulin sensitivity but preserved p42/44 MAP kinase activation, other signalling defects were evident. These findings implicate defective p42/44 MAP kinase signalling as a potential contributor to obesity-related IR in a non-diabetic population, although clearly multiple signalling defects underlie obesity associated IR
Red wine polyphenols prevent metabolic and cardiovascular alterations associated with obesity in Zucker fatty rats (Fa/Fa)
Peer reviewedPublisher PD
Apple polyphenol extract improves insulin sensitivity in vitro and in vivo in animal models of insulin resistance
Background:
Apple polyphenols could represent a novel nutritional approach in the management and control of blood glucose, especially in type 2 diabetics. The aim of this study was to test the therapeutic potential of an apple polyphenol extract (APE) in an insulin-resistant rat model and to determine the molecular basis of insulin sensitivity action in skeletal muscle cells.Methods:
Acute effect of APE on the postprandial hyperglycemic response was assayed in 15 week old obese Zucker rats (OZR), by using a meal tolerance test (MTT). The ability of APE to improve whole peripheral insulin sensitivity was also assayed in a chronic study by using the euglycemic-hyperinsulinemic clamp technique. To elucidate the molecular mechanisms, rat L6 myotubes were used. Glucose uptake was measured by using 2-[3H]-Deoxy-Glucose (2-DG) and specific inhibitors, as well as phosphorylation status of key kinases, were used to determine the implicated signaling pathway.Results:
In vivo study showed that nutritional intervention with APE induced an increase of insulin sensitivity with an increase of glucose infusion rate (GIR) of 45 %. Additionally, in vitro results showed a synergistic effect between APE and insulin as well as increased glucose uptake through GLUT4 translocation in muscle cells. This translocation was mediated by phosphatydil inositol 3-kinase (PI3K) and peroxisome proliferator-activated receptor-gamma (PPARγ) signaling pathways.Conclusions:
As a whole, this study describes the mechanisms involved in the insulin sensitizing effect of APE, which could be considered a promising ingredient for inclusion in nutritional products focused on the management of chronic diseases such as diabetes.This research was supported by funds from Abbott Laboratories S.A
- …