9 research outputs found

    Recent advances in rapid and sensitive screening for abiotic stress tolerance

    Full text link
    Traditionally, screening for abiotic stress tolerance at field level was based on necrosis scores and shoot biomass reduction on stress exposure, relative to unstressed controls. However, such a measure of tolerance screening is laborious, destructive, and time consuming, and results are subjected to environmental variation. Recently, noninvasive, high-throughput screening techniques have been developed for screening abiotic stress tolerance in crops. In this direction, some physiological, biochemical, and/or molecular indicators/markers have been identified for rapid and sensitive indirect screening of germplasm. Physiological markers like membrane damage based on electrolyte leakage, stomatal conductance, chlorophyll content and so on are currently available. In addition, quick and sensitive screening in crop plants is possible with biochemical markers like status of reactive oxygen species and oxidative damage to biological macromolecules like lipids, proteins, and nucleic acids. Identification of molecular markers associated with the tolerance response has also made rapid and sensitive indirect selection possible in a few crop species. Thus, development of such methods is valuable in breeding for abiotic stress tolerance in plants

    Interactions between plant hormones and heavy metals responses

    Full text link
    Abstract Heavy metals are natural non-biodegradable constituents of the Earth's crust that accumulate and persist indefinitely in the ecosystem as a result of human activities. Since the industrial revolution, the concentration of cadmium, arsenic, lead, mercury and zinc, amongst others, have increasingly contaminated soil and water resources, leading to significant yield losses in plants. These issues have become an important concern of scientific interest. Understanding the molecular and physiological responses of plants to heavy metal stress is critical in order to maximize their productivity. Recent research has extended our view of how plant hormones can regulate and integrate growth responses to various environmental cues in order to sustain life. In the present review we discuss current knowledge about the role of the plant growth hormones abscisic acid, auxin, brassinosteroid and ethylene in signaling pathways, defense mechanisms and alleviation of heavy metal toxicity
    corecore