198 research outputs found

    Performance characterizations and thermodynamic analysis of magnesium sulfate-impregnated zeolite 13X and activated alumina composite sorbents for thermal energy storage

    Get PDF
    The composite sorbents of MgSO4-impregnated zeolite 13X and activated alumina are developed for thermal energy storage (TES) with different temperature ranges. The sorption and desorption characteristics of raw and MgSO4-impregnated activated alumina are studied, and the performances of the selected sorbents are tested in a closed-system TES device. The results are compared with those of raw and MgSO4-impregnated zeolite 13X. It is shown that the impregnated MgSO4 improves the overall TES performances of zeolite 13X and activated alumina. Compared to the raw host matrices, the impregnated MgSO4 remarkably accelerates the temperature-rising rate of zeolite 13X to about three times and improves the temperature lift of activated alumina by 32.5%. The experimental energy storage densities of MgSO4-impregnated zeolite 13X and activated alumina are 123.4 kWh m−3and 82.6 kWh m−3, respectively. The sorption temperature region of activated alumina is more aligned with the preferred hydration temperature of MgSO4 in comparison with zeolite 13X. The hydration characteristics of MgSO4 can resolve the solution leakage issue of open systems. Thermodynamic analysis is conducted to evaluate the performances of the TES device with different sorbents. It is found that entransy can be used to assess thermally and electrically driven TES systems reasonably

    A zeolite 13X/magnesium sulfate–water sorption thermal energy storage device for domestic heating

    Get PDF
    A sorption thermal energy storage (TES) device for domestic heating is presented in this article. The TES device adopts the new design scenario with valve-less adsorber and separate reservoir to eliminate the large-diameter vacuum valve for vapor flow, which decreases the cost, reduces the vapor flow resistance, and improves the system reliability. The device is charged by the electric heater, which can add much flexibility to the building energy system as well as contribute to the valley filling and peak shaving from demand side management. The newly developed composite sorbent of zeolite 13X/MgSO4/ENG-TSA (expanded natural graphite treated with sulfuric acid) with the salt mass fraction of 15% in the zeolite 13X/MgSO4 mixture is tested and used in the TES device (denoted as XM15/ENG-TSA). Experimental results show that the TES device with XM15/ENG-TSA has the energy storage density of 120.3kWh∙m−3 at 250°C charging temperature and 25–90°C discharging temperature. The temperature lift is as high as 65–69°C with the adsorption and evaporating temperatures of 25°C. The impregnation of MgSO4 dramatically improves the temperature rising rate during the adsorption heat recovery process, but the specific energy storage capacity of XM15/ENG-TSA is similar to that of zeolite 13X/ENG-TSA. The effect of the impregnated MgSO4 suggests that MgSO4 can be used for low-temperature TES to relieve the self-hindrance of the hydration reaction

    The Strength–Grain Size Relationship in Ultrafine-Grained Metals

    Full text link

    Crystal Structure of the Hendra Virus Attachment G Glycoprotein Bound to a Potent Cross-Reactive Neutralizing Human Monoclonal Antibody

    Get PDF
    The henipaviruses, represented by Hendra (HeV) and Nipah (NiV) viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb) have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4) was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines

    Ultrafine grained plates of Al-Mg-Si alloy obtained by Incremental Equal Channel Angular Pressing : microstructure and mechanical properties

    Get PDF
    In this study, an Al-Mg-Si alloy was processed using via Incremental Equal Channel Angular Pressing (I-ECAP) in order to obtain homogenous, ultrafine grained plates with low anisotropy of the mechanical properties. This was the first attempt to process an Al-Mg-Si alloy using this technique. Samples in the form of 3 mm-thick square plates were subjected to I-ECAP with the 90˚ rotation around the axis normal to the surface of the plate between passes. Samples were investigated first in their initial state, then after a single pass of I-ECAP and finally after four such passes. Analyses of the microstructure and mechanical properties demonstrated that the I-ECAP method can be successfully applied in Al-Mg-Si alloys. The average grain size decreased from 15 - 19 µm in the initial state to below 1 µm after four I-ECAP passes. The fraction of high angle grain boundaries in the sample subjected to four I-ECAP passes lay within 53-57 % depending on the examined plane. The mechanism of grain refinement in Al-Mg-Si alloy was found to be distinctly different from that in pure aluminium with the grain rotation being more prominent than the grain subdivision, which was attributed to lower stacking fault energy and the reduced mobility of dislocations in the alloy. The ultimate tensile strength increased more than twice, whereas the yield strength - more than threefold. Additionally, the plates processed by I-ECAP exhibited low anisotropy of mechanical properties (in plane and across the thickness) in comparison to other SPD processing methods, which makes them attractive for further processing and applications
    • …
    corecore