3 research outputs found
A Cluster Method for the Ashkin--Teller Model
A cluster Monte Carlo algorithm for the Ashkin-Teller (AT) model is
constructed according to the guidelines of a general scheme for such
algorithms. Its dynamical behaviour is tested for the square lattice AT model.
We perform simulations on the line of critical points along which the exponents
vary continuously, and find that critical slowing down is significantly
reduced. We find continuous variation of the dynamical exponent along the
line, following the variation of the ratio , in a manner which
satisfies the Li-Sokal bound , that was so far
proved only for Potts models.Comment: 18 pages, Revtex, figures include
Random Field Models for Relaxor Ferroelectric Behavior
Heat bath Monte Carlo simulations have been used to study a four-state clock
model with a type of random field on simple cubic lattices. The model has the
standard nonrandom two-spin exchange term with coupling energy and a random
field which consists of adding an energy to one of the four spin states,
chosen randomly at each site. This Ashkin-Teller-like model does not separate;
the two random-field Ising model components are coupled. When , the
ground states of the model remain fully aligned. When , a
different type of ground state is found, in which the occupation of two of the
four spin states is close to 50%, and the other two are nearly absent. This
means that one of the Ising components is almost completely ordered, while the
other one has only short-range correlations. A large peak in the structure
factor appears at small for temperatures well above the transition
to long-range order, and the appearance of this peak is associated with slow,
"glassy" dynamics. The phase transition into the state where one Ising
component is long-range ordered appears to be first order, but the latent heat
is very small.Comment: 7 pages + 12 eps figures, to appear in Phys Rev