45 research outputs found

    The t(2;3)(q21;q27) translocation in non-Hodgkin's lymphoma displays BCL6 mutations in the 5' regulatory region and chromosomal breakpoints distant from the gene

    Get PDF
    The BCL6 gene, mapped at the chromosomal band 3q27, encodes a POZ/Zinc finger transcription repressor protein. It is frequently activated in Non-Hodgkin's lymphomas (NHL) by translocations with breakpoints clustering in the 5' major breakpoint region (MBR) as well as by mutations in the same region. The translocations lead to BCL6 activation by substitution of promoters of rearranging genes derived from the reciprocal chromosomal partners such as IG. We report the molecular genetic analysis of a novel t(2;3)(q21;q27) translocation subset in NHL comprising three cases without apparent BCL6 involvement in the translocation. Southern blot analysis of tumor DNAs utilizing BCL6 MBR probes revealed no rearrangement in two cases. Two rearranged bands in the third case resulted from a deletion in one allele and a mutation in the other allele. Southern blot analysis of DNA from one of the two tumors without BCL6 rearrangement, using a probe derived from the recently identified alternative breakpoint region (ABR), showed a rearrangement. The ABR is located 200-270 kb telomeric to MBR. Mutations were identified in the previously reported hypermutable region of BCL6 in all three tumors. In one, the mutant allele alone was found to be expressed by RT-PCR analysis of RNA. These results demonstrate the presence of 3q27 translocation breakpoints at a distance from BCL6 suggesting distant breaks that deregulate the gene or involvement of other genes that may be subject to rearrangement

    Analysis of PTEN Mutations and Deletions in B-Cell Non-Hodgkin’s Lymphomas

    Get PDF
    The PTEN gene is involved in 10q23 deletions in several types of cancer, including glioma, melanoma, endometrial and prostate carcinomas. The PTEN gene product is a dual-specificity phosphatase with putative tumor suppressor function. Deletions and rearrangements of 10q22–25 have been reported in ,5%–10% of non-Hodgkin’s lymphomas (NHLs), raising the possibility of PTEN involvement in these tumors. In order to address this question, we analyzed a panel of NHLs (n 5 74) representative of the main histologic subtypes for mutations and homozygous deletions of PTEN. We report somatic coding/splice site mutations in 20% (2 of 10) of Burkitt’s lymphoma cell lines and in 3% (2 of 64) of primary NHL cases analyzed. No homozygous deletions were found in these tumors. Interestingly, this study showed that cytogenetically characterized NHL cases (n 5 6) with 10q22–q25 abnormalities displayed neither biallelic deletions nor mutations of PTEN. These results suggest that a tumor suppressor gene distinct from PTEN may be involved in 10q deletions in this subgroup of NHL cases

    Analysis of PTEN Mutations and Deletions in B-Cell Non-Hodgkin’s Lymphomas

    Get PDF
    The PTEN gene is involved in 10q23 deletions in several types of cancer, including glioma, melanoma, endometrial and prostate carcinomas. The PTEN gene product is a dual-specificity phosphatase with putative tumor suppressor function. Deletions and rearrangements of 10q22–25 have been reported in ,5%–10% of non-Hodgkin’s lymphomas (NHLs), raising the possibility of PTEN involvement in these tumors. In order to address this question, we analyzed a panel of NHLs (n 5 74) representative of the main histologic subtypes for mutations and homozygous deletions of PTEN. We report somatic coding/splice site mutations in 20% (2 of 10) of Burkitt’s lymphoma cell lines and in 3% (2 of 64) of primary NHL cases analyzed. No homozygous deletions were found in these tumors. Interestingly, this study showed that cytogenetically characterized NHL cases (n 5 6) with 10q22–q25 abnormalities displayed neither biallelic deletions nor mutations of PTEN. These results suggest that a tumor suppressor gene distinct from PTEN may be involved in 10q deletions in this subgroup of NHL cases

    Deregulation of MUM1/IRF4 by chromosomal translocation in multiple myeloma

    Get PDF
    The pathogenesis of multiple myeloma (MM), an incurable tumour causing the deregulated proliferation of terminally differentiated 8 cells, is unknown 1‱ Chromosomal translocations (14q1) affecting band 14q32 and unidentified partner chromosomes are common in this tumour, suggesting that they may cause the activation of novel oncogenes2.3. By cloning the chromosomal breakpoints in an MM cell line, we show that the 14q+ translocation represents a t(6;14)(p2S;q32) and that this aberration is recurrent in MM, as it was found in two of eleven MM cell lines. The translocation juxtaposes the immunoglobulin heavy-chain (lgH) locus to MUM1 (mM:Itiple myeloma oncogene 1JIIRF4 gene, a member of the interferon regulatory factor (IRF) family known to be active in the control of 8-cell proliferation and differentiation. As a result, the MUM1RRF4 gene is overexpressed-an event that may contribute to tumorigenesis, as MUM11/RF4 has oncogenic activity in vitro. These findings identify a novel genetic alteration associated with MM, with implications for the pathogenesis and diagnostics of this tumour

    Alternative Translocation Breakpoint Cluster Region 5' to BCL-6 in B-cell Non-Hodgkin’s Lymphoma

    Get PDF
    Chromosomal translocations involving band 3q27 with various different partner chromosomes represent a recurrent cytogenetic abnormality in B-cell non-Hodgkin’s lymphoma. In a fraction of these translocations, the chromosomal breakpoint is located within the 5' noncoding region of the BCL-6 proto-oncogene where the BCL-6 major breakpoint region (MBR) maps. As a result of the translocation, BCL-6 expression is deregulated by promoter substitution. However, between 30 and 50% of lymphomas with cytogenetically detectable translocations affecting band 3q27 retain a germ-line configuration at the BCL-6 locus. To identify possible additional breakpoint clusters within 3q27, we cloned a t(3;14)(q27;q32) lymphoma without MBR rearrangement and found a novel breakpoint site located between 245 and 285 kb 5' to BCL-6. Breakpoints within this newly described region, which we called the alternative breakpoint region (ABR), were found to be recurrent in lymphomas carrying t(3q27) chromosomal translocations but devoid of BCL-6 MBR rearrangements. Comparative analysis of multiple lymphomas carrying rearrangements within the ABR showed that the breakpoints cluster within a 20-kb distance. Translocations involving the ABR may juxtapose BCL-6 to distantly acting, heterologous transcriptional regulatory elements which cause deregulation of the proto-oncogene. The identification of BCL-6 ABR provides new tools for the diagnosis of lymphomas carrying aberrations at 3q27 and deregulated BCL-6 genes

    Alternative Translocation Breakpoint Cluster Region 5' to BCL-6 in B-cell Non-Hodgkin’s Lymphoma

    Get PDF
    Chromosomal translocations involving band 3q27 with various different partner chromosomes represent a recurrent cytogenetic abnormality in B-cell non-Hodgkin’s lymphoma. In a fraction of these translocations, the chromosomal breakpoint is located within the 5' noncoding region of the BCL-6 proto-oncogene where the BCL-6 major breakpoint region (MBR) maps. As a result of the translocation, BCL-6 expression is deregulated by promoter substitution. However, between 30 and 50% of lymphomas with cytogenetically detectable translocations affecting band 3q27 retain a germ-line configuration at the BCL-6 locus. To identify possible additional breakpoint clusters within 3q27, we cloned a t(3;14)(q27;q32) lymphoma without MBR rearrangement and found a novel breakpoint site located between 245 and 285 kb 5' to BCL-6. Breakpoints within this newly described region, which we called the alternative breakpoint region (ABR), were found to be recurrent in lymphomas carrying t(3q27) chromosomal translocations but devoid of BCL-6 MBR rearrangements. Comparative analysis of multiple lymphomas carrying rearrangements within the ABR showed that the breakpoints cluster within a 20-kb distance. Translocations involving the ABR may juxtapose BCL-6 to distantly acting, heterologous transcriptional regulatory elements which cause deregulation of the proto-oncogene. The identification of BCL-6 ABR provides new tools for the diagnosis of lymphomas carrying aberrations at 3q27 and deregulated BCL-6 genes

    Frequent disruption of the RB pathway in indolent follicular lymphoma suggests a new combination therapy.

    Get PDF
    Loss of cell cycle controls is a hallmark of cancer and has a well-established role in aggressive B cell malignancies. However, the role of such lesions in indolent follicular lymphoma (FL) is unclear and individual lesions have been observed with low frequency. By analyzing genomic data from two large cohorts of indolent FLs, we identify a pattern of mutually exclusive (P = 0.003) genomic lesions that impair the retinoblastoma (RB) pathway in nearly 50% of FLs. These alterations include homozygous and heterozygous deletions of the p16/CDKN2a/b (7%) and RB1 (12%) loci, and more frequent gains of chromosome 12 that include CDK4 (29%). These aberrations are associated with high-risk disease by the FL prognostic index (FLIPI), and studies in a murine FL model confirm their pathogenic role in indolent FL. Increased CDK4 kinase activity toward RB1 is readily measured in tumor samples and indicates an opportunity for CDK4 inhibition. We find that dual CDK4 and BCL2 inhibitor treatment is safe and effective against available models of FL. In summary, frequent RB pathway lesions in indolent, high-risk FLs indicate an untapped therapeutic opportunity
    corecore