689 research outputs found

    A note on the appearance of self-dual Yang-Mills fields in integrable hierarchies

    Full text link
    A family of mappings from the solution spaces of certain generalized Drinfeld-Sokolov hierarchies to the self-dual Yang-Mills system on R^{2,2} is described. This provides an extension of the well-known relationship between self-dual connections and integrable hierarchies of AKNS and Drinfeld-Sokolov type

    Hidden Symmetries and Integrable Hierarchy of the N=4 Supersymmetric Yang-Mills Equations

    Get PDF
    We describe an infinite-dimensional algebra of hidden symmetries of N=4 supersymmetric Yang-Mills (SYM) theory. Our derivation is based on a generalization of the supertwistor correspondence. Using the latter, we construct an infinite sequence of flows on the solution space of the N=4 SYM equations. The dependence of the SYM fields on the parameters along the flows can be recovered by solving the equations of the hierarchy. We embed the N=4 SYM equations in the infinite system of the hierarchy equations and show that this SYM hierarchy is associated with an infinite set of graded symmetries recursively generated from supertranslations. Presumably, the existence of such nonlocal symmetries underlies the observed integrable structures in quantum N=4 SYM theory.Comment: 24 page

    How to find discrete contact symmetries

    Get PDF
    This paper describes a new algorithm for determining all discrete contact symmetries of any differential equation whose Lie contact symmetries are known. The method is constructive and is easy to use. It is based upon the observation that the adjoint action of any contact symmetry is an automorphism of the Lie algebra of generators of Lie contact symmetries. Consequently, all contact symmetries satisfy various compatibility conditions. These conditions enable the discrete symmetries to be found systematically, with little effort

    Quantisation of twistor theory by cocycle twist

    Full text link
    We present the main ingredients of twistor theory leading up to and including the Penrose-Ward transform in a coordinate algebra form which we can then `quantise' by means of a functorial cocycle twist. The quantum algebras for the conformal group, twistor space CP^3, compactified Minkowski space CMh and the twistor correspondence space are obtained along with their canonical quantum differential calculi, both in a local form and in a global *-algebra formulation which even in the classical commutative case provides a useful alternative to the formulation in terms of projective varieties. We outline how the Penrose-Ward transform then quantises. As an example, we show that the pull-back of the tautological bundle on CMh pulls back to the basic instanton on S^4\subset CMh and that this observation quantises to obtain the Connes-Landi instanton on \theta-deformed S^4 as the pull-back of the tautological bundle on our \theta-deformed CMh. We likewise quantise the fibration CP^3--> S^4 and use it to construct the bundle on \theta-deformed CP^3 that maps over under the transform to the \theta-deformed instanton.Comment: 68 pages 0 figures. Significant revision now has detailed formulae for classical and quantum CP^

    Supersymmetric Gauge Theories in Twistor Space

    Full text link
    We construct a twistor space action for N=4 super Yang-Mills theory and show that it is equivalent to its four dimensional spacetime counterpart at the level of perturbation theory. We compare our partition function to the original twistor-string proposal, showing that although our theory is closely related to string theory, it is free from conformal supergravity. We also provide twistor actions for gauge theories with N<4 supersymmetry, and show how matter multiplets may be coupled to the gauge sector.Comment: 23 pages, no figure

    Ricci-flat supertwistor spaces

    Full text link
    We show that supertwistor spaces constructed as a Kahler quotient of a hyperkahler cone (HKC) with equal numbers of bosonic and fermionic coordinates are Ricci-flat, and hence, Calabi-Yau. We study deformations of the supertwistor space induced from deformations of the HKC. We also discuss general infinitesimal deformations that preserve Ricci-flatness.Comment: 13 pages, references and comments adde

    The Strange Parton Distribution of the Nucleon: Global Analysis and Applications

    Get PDF
    The strangeness degrees of freedom in the parton structure of the nucleon are explored in the global analysis framework, using the new CTEQ6.5 implementation of the general mass perturbative QCD formalism of Collins. We systematically determine the constraining power of available hard scattering experimental data on the magnitude and shape of the strange quark and anti-quark parton distributions. We find that current data favor a distinct shape of the strange sea compared to the isoscalar non-strange sea. A new reference parton distribution set, CTEQ6.5S0, and representative sets spanning the allowed ranges of magnitude and shape of the strange distributions, are presented. Some applications to physical processes of current interest in hadron collider phenomenology are discussed.Comment: 19 pages; revised version submitted to JHE

    Darboux Transformations for a Lax Integrable System in 2n2n-Dimensions

    Full text link
    A 2n2n-dimensional Lax integrable system is proposed by a set of specific spectral problems. It contains Takasaki equations, the self-dual Yang-Mills equations and its integrable hierarchy as examples. An explicit formulation of Darboux transformations is established for this Lax integrable system. The Vandermonde and generalized Cauchy determinant formulas lead to a description for deriving explicit solutions and thus some rational and analytic solutions are obtained.Comment: Latex, 14 pages, to be published in Lett. Math. Phy

    Aprotinin inhibits proinflammatory activation of endothelial cells by thrombin through the protease-activated receptor 1

    Get PDF
    ObjectiveThrombin is generated in significant quantities during cardiopulmonary bypass and mediates adverse events, such as platelet aggregation and proinflammatory responses, through activation of the high-affinity thrombin receptor protease-activated receptor 1, which is expressed on platelets and endothelium. Thus antagonism of protease-activated receptor 1 might have broad therapeutic significance. Aprotinin, used clinically to reduce transfusion requirements and the inflammatory response to bypass, has been shown to inhibit protease-activated receptor 1 on platelets in vitro and in vivo. Here we have examined whether aprotinin inhibits endothelial protease-activated receptor 1 activation and resulting proinflammatory responses induced by thrombin.MethodsProtease-activated receptor 1 expression and function were examined in cultured human umbilical vein endothelial cells after treatment with α-thrombin at 0.02 to 0.15 U/mL in the presence or absence of aprotinin (200-1600 kallikrein inhibitory units/mL). Protease-activated receptor 1 activation was assessed by using an antibody, SPAN-12, which detects only the unactivated receptor, and thrombin-mediated calcium fluxes. Other thrombin-dependent inflammatory pathways investigated were phosphorylation of the p42/44 mitogen-activated protein kinase, upregulation of the early growth response 1 transcription factor, and production of the proinflammatory cytokine interleukin 6.ResultsPretreatment of cultured endothelial cells with aprotinin significantly spared protease-activated receptor 1 receptor cleavage (P < .0001) and abrogated calcium fluxes caused by thrombin. Aprotinin inhibited intracellular signaling through p42/44 mitogen-activated protein kinase (P < .05) and early growth response 1 transcription factor (P < .05), as well as interleukin 6 secretion caused by thrombin (P < .005).ConclusionsThis study demonstrates that endothelial cell activation by thrombin and downstream inflammatory responses can be inhibited by aprotinin in vitro through blockade of protease-activated receptor 1. Our results provide a new molecular basis to help explain the anti-inflammatory properties of aprotinin reported clinically

    Modulated Amplitude Waves in Bose-Einstein Condensates

    Full text link
    We analyze spatio-temporal structures in the Gross-Pitaevskii equation to study the dynamics of quasi-one-dimensional Bose-Einstein condensates (BECs) with mean-field interactions. A coherent structure ansatz yields a parametrically forced nonlinear oscillator, to which we apply Lindstedt's method and multiple-scale perturbation theory to determine the dependence of the intensity of periodic orbits (``modulated amplitude waves'') on their wave number. We explore BEC band structure in detail using Hamiltonian perturbation theory and supporting numerical simulations.Comment: 5 pages, 4 figs, revtex, final form of paper, to appear in PRE (forgot to include \bibliography command in last update, so this is a correction of that; the bibliography is hence present again
    corecore