681 research outputs found
Molecular cloud structure in the Magellanic Clouds: e_ect of metallicity
Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe
Molecular Cloud Structure in the Magellanic Clouds: Effect of Metallicity
The chemical structure of neutral clouds in low metallicity environments is
examined with particular emphasis on the H to H_2 and C+ to CO transitions. We
observed near-IR H_2 lines and the CO J=1-0 line from 30 Doradus and N159/N160
in the Large Magellanic Cloud and from DEM S 16, DEM S 37, and LI-SMC 36 in the
Small Magellanic Cloud. We find that the H_2 emission is UV-excited and that
(weak) CO emission always exists (in our surveyed regions) toward positions
where H_2 and [CII] emission have been detected. Using a PDR code and a
radiative transfer code, we simulate the emission of line radiation from
spherical clouds and from large planar clouds. Because the [CII] emission and
H_2 emission arise on the surface of the cloud and the lines are optically
thin, these lines are not affected by changes in the relative sizes of the
neutral cloud and the CO bearing core, while the optically thick CO emission
can be strongly affected. The sizes of clouds are estimated by measuring the
deviation of CO emission strength from that predicted by a planar cloud model
of a given size. The average cloud column density and therefore size increases
as the metallicity decreases. Our result agrees with the photoionization
regulated star formation theory by Mc Kee (1989).Comment: 45 Pages including 15 figures. To be published in the ApJ May 10,
1998 issue, Vol. 49
Spectral Subtraction of Robot Motion Noise for Improved Event Detection in Tactile Acceleration Signals
New robots for teleoperation and autonomous manipulation are increasingly being equipped with high-bandwidth accelerometers for measuring the transient vibrational cues that occur during con- tact with objects. Unfortunately, the robot\u27s own internal mechanisms often generate significant high-frequency accelerations, which we term ego-vibrations. This paper presents an approach to characterizing and removing these signals from acceleration measurements. We adapt the audio processing technique of spectral subtraction over short time windows to remove the noise that is estimated to occur at the robot\u27s present joint velocities. Implementation for the wrist roll and gripper joints on a Willow Garage PR2 robot demonstrates that spectral subtraction significantly increases signal-to-noise ratio, which should improve vibrotactile event detection in both teleoperation and autonomous robotics
From Vicious Walkers to TASEP
We propose a model of semi-vicious walkers, which interpolates between the
totally asymmetric simple exclusion process and the vicious walkers model,
having the two as limiting cases. For this model we calculate the asymptotics
of the survival probability for particles and obtain a scaling function,
which describes the transition from one limiting case to another. Then, we use
a fluctuation-dissipation relation allowing us to reinterpret the result as the
particle current generating function in the totally asymmetric simple exclusion
process. Thus we obtain the particle current distribution asymptotically in the
large time limit as the number of particles is fixed. The results apply to the
large deviation scale as well as to the diffusive scale. In the latter we
obtain a new universal distribution, which has a skew non-Gaussian form. For
particles its asymptotic behavior is shown to be
as and
as .Comment: 37 pages, 4 figures, Corrected reference
Quantum Dynamics in Non-equilibrium Strongly Correlated Environments
We consider a quantum point contact between two Luttinger liquids coupled to
a mechanical system (oscillator). For non-vanishing bias, we find an effective
oscillator temperature that depends on the Luttinger parameter. A generalized
fluctuation-dissipation relation connects the decoherence and dissipation of
the oscillator to the current-voltage characteristics of the device. Via a
spectral representation, this result is generalized to arbitrary leads in a
weak tunneling regime.Comment: 4 pages, 1 figur
Solitons in Triangular and Honeycomb Dynamical Lattices with the Cubic Nonlinearity
We study the existence and stability of localized states in the discrete
nonlinear Schr{\"o}dinger equation (DNLS) on two-dimensional non-square
lattices. The model includes both the nearest-neighbor and long-range
interactions. For the fundamental strongly localized soliton, the results
depend on the coordination number, i.e., on the particular type of the lattice.
The long-range interactions additionally destabilize the discrete soliton, or
make it more stable, if the sign of the interaction is, respectively, the same
as or opposite to the sign of the short-range interaction. We also explore more
complicated solutions, such as twisted localized modes (TLM's) and solutions
carrying multiple topological charge (vortices) that are specific to the
triangular and honeycomb lattices. In the cases when such vortices are
unstable, direct simulations demonstrate that they turn into zero-vorticity
fundamental solitons.Comment: 17 pages, 13 figures, Phys. Rev.
Improved tests of extra-dimensional physics and thermal quantum field theory from new Casimir force measurements
We report new constraints on extra-dimensional models and other physics
beyond the Standard Model based on measurements of the Casimir force between
two dissimilar metals for separations in the range 0.2--1.2 m. The Casimir
force between an Au-coated sphere and a Cu-coated plate of a
microelectromechanical torsional oscillator was measured statically with an
absolute error of 0.3 pN. In addition, the Casimir pressure between two
parallel plates was determined dynamically with an absolute error of mPa. Within the limits of experimental and theoretical errors, the results
are in agreement with a theory that takes into account the finite conductivity
and roughness of the two metals. The level of agreement between experiment and
theory was then used to set limits on the predictions of extra-dimensional
physics and thermal quantum field theory. It is shown that two theoretical
approaches to the thermal Casimir force which predict effects linear in
temperture are ruled out by these experiments. Finally, constraints on Yukawa
corrections to Newton's law of gravity are strengthened by more than an order
of magnitude in the range 56 nm to 330 nm.Comment: Revtex 4, 35 pages, 14 figures in .gif format, accepted for
publication in Phys. Rev.
A meta-analysis of genome-wide association studies of growth differentiation Factor-15 concentration in blood
Blood levels of growth differentiation factor-15 (GDF-15), also known as macrophage inhibitory cytokine-1 (MIC-1), have been associated with various pathological processes and diseases, including cardiovascular disease and cancer. Prior studies suggest genetic factors play a role in regulating blood MIC-1/GDF-15 concentration. In the current study, we conducted the largest genome-wide association study (GWAS) to date using a sample of ∼5,400 community-based Caucasian participants, to determine the genetic variants associated with MIC-1/GDF-15 blood concentration. Conditional and joint (COJO), gene-based association, and gene-set enrichment analyses were also carried out to identify novel loci, genes, and pathways. Consistent with prior results, a locus on chromosome 19, which includes nine single nucleotide polymorphisms (SNPs) (top SNP, rs888663, p = 1.690 × 10-35), was significantly associated with blood MIC-1/GDF-15 concentration, and explained 21.47% of its variance. COJO analysis showed evidence for two independent signals within this locus. Gene-based analysis confirmed the chromosome 19 locus association and in addition, a putative locus on chromosome 1. Gene-set enrichment analyses showed that the“COPI-mediated anterograde transport” gene-set was associated with MIC-1/GDF15 blood concentration with marginal significance after FDR correction (p = 0.067). In conclusion, a locus on chromosome 19 was associated with MIC-1/GDF-15 blood concentration with genome-wide significance, with evidence for a new locus (chromosome 1). Future studies using independent cohorts are needed to confirm the observed associations especially for the chromosomes 1 locus, and to further investigate and identify the causal SNPs that contribute to MIC-1/GDF-15 levels
Modulation of radial blood flow during Braille character discrimination task
Purpose: Human hands are excellent in performing sensory and motor function. We have hypothesized that blood flow of the hand is dynamically regulated by sympathetic outflow during concentrated finger perception. To identify this hypothesis, we measured radial blood flow (RBF), radial vascular conductance (RVC), heart rate (HR), and arterial blood pressure (AP) during Braille reading performed under the blind condition in nine healthy subjects. The subjects were instructed to read a flat plate with raised letters (Braille reading) for 30 s by the forefinger, and to touch a blank plate as control for the Braille discrimination procedure. Results: HR and AP slightly increased during Braille reading but remained unchanged during the touching of the blank plate. RBF and RVC were reduced during the Braille character discrimination task (decreased by -46% and -49%, respectively). Furthermore, the changes in RBF and RVC were much greater during the Braille character discrimination task than during the touching of the blank plate (decreased by -20% and -20%, respectively). Conclusions: These results have suggested that the distribution of blood flow to the hand is modulated via sympathetic nerve activity during concentrated finger perception
- …