76 research outputs found

    Countdown to success

    No full text

    Evolution of π0\pi^0 suppression in Au+Au collisions from sNN=39\sqrt{s_{NN}} = 39 to 200 GeV

    No full text
    International audienceNeutral-pion, pi^0, spectra were measured at midrapidity (|y|<0.35) in Au+Au collisions at sqrt(s_NN) = 39 and 62.4 GeV and compared to earlier measurements at 200 GeV in the 1<p_T<10 GeV/c transverse-momentum (p_T) range. The high-p_T tail is well described by a power law in all cases and the powers decrease significantly with decreasing center-of-mass energy. The change of powers is very similar to that observed in the corresponding p+p-collision spectra. The nuclear-modification factors (R_AA) show significant suppression and a distinct energy dependence at moderate p_T in central collisions. At high p_T, R_AA is similar for 62.4 and 200 GeV at all centralities. Perturbative-quantum-chromodynamics calculations that describe R_AA well at 200 GeV, fail to describe the 39 GeV data, raising the possibility that the relative importance of initial-state effects and soft processes increases at lower energies. A conclusion that the region where hard processes are dominant is reached only at higher p_T, is also supported by the x_T dependence of the x_T-scaling power-law exponent

    Centrality dependence of Lévy-stable two-pion Bose-Einstein correlations in sNN=200\sqrt{s_{_{NN}}}=200 GeV Au++Au collisions

    No full text
    International audienceThe PHENIX experiment measured the centrality dependence of two-pion Bose-Einstein correlation functions in sNN=200\sqrt{s_{_{NN}}}=200~GeV Au++Au collisions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The data are well represented by Lévy-stable source distributions. The extracted source parameters are the correlation-strength parameter λ\lambda, the Lévy index of stability α\alpha, and the Lévy-scale parameter RR as a function of transverse mass mTm_T and centrality. The λ(mT)\lambda(m_T) parameter is constant at larger values of mTm_T, but decreases as mTm_T decreases. The Lévy scale parameter R(mT)R(m_T) decreases with mTm_T and exhibits proportionality to the length scale of the nuclear overlap region. The Lévy exponent α(mT)\alpha(m_T) is independent of mTm_T within uncertainties in each investigated centrality bin, but shows a clear centrality dependence. At all centralities, the Lévy exponent α\alpha is significantly different from that of Gaussian (α=2\alpha=2) or Cauchy (α=1\alpha=1) source distributions. Comparisons to the predictions of Monte-Carlo simulations of resonance-decay chains show that in all but the most peripheral centrality class (50%-60%), the obtained results are inconsistent with the measurements, unless a significant reduction of the in-medium mass of the η\eta' meson is included. In each centrality class, the best value of the in-medium η\eta' mass is compared to the mass of the η\eta meson, as well as to several theoretical predictions that consider restoration of UA(1)U_A(1) symmetry in hot hadronic matter

    Production of π0\pi^0 and η\eta mesons in U+U collisions at sNN=\sqrt{s_{NN}}=192 GeV

    No full text
    International audienceThe PHENIX experiment at the Relativistic Heavy Ion Collider measured π0 and η mesons at midrapidity in U+U collisions at sNN=192 GeV in a wide transverse momentum range. Measurements were performed in the π0(η)→γγ decay modes. A strong suppression of π0 and η meson production at high transverse momentum was observed in central U+U collisions relative to binary scaled p+p results. Yields of π0 and η mesons measured in U+U collisions show similar suppression pattern to those measured in Au+Au collisions at sNN=200 GeV for similar numbers of participant nucleons. The η/π0 ratios do not show dependence on centrality or transverse momentum and are consistent with previously measured values in hadron-hadron, hadron-nucleus, nucleus-nucleus, and e+e− collisions

    Measurements of directed, elliptic, and triangular flow in Cu++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV

    No full text
    International audienceMeasurements of anisotropic flow Fourier coefficients (vn) for inclusive charged particles and identified hadrons π±, K±, p, and p¯ produced at midrapidity in Cu+Au collisions at sNN=200 GeV are presented. The data were collected in 2012 by the PHENIX experiment at the Relativistic Heavy-Ion Collider (RHIC). The particle azimuthal distributions with respect to different-order symmetry planes Ψn, for n=1, 2, and 3 are studied as a function of transverse momentum pT over a broad range of collision centralities. Mass ordering, as expected from hydrodynamic flow, is observed for all three harmonics. The charged-particle results are compared with hydrodynamical and transport model calculations. We also compare these Cu+Au results with those in Cu+Cu and Au+Au collisions at the same sNN and find that the v2 and v3, as a function of transverse momentum, follow a common scaling with 1/(ɛnNpart1/3)

    Low-pTp_T direct-photon production in Au++Au collisions at sNN=39\sqrt{s_{_{NN}}}=39 and 62.4 GeV

    No full text
    The measurement of direct photons from Au++Au collisions at sNN=39\sqrt{s_{_{NN}}}=39 and 62.4 GeV in the transverse-momentum range 0.4<pT<30.4<p_T<3 Gev/cc is presented by the PHENIX collaboration at the Relativistic Heavy Ion Collider. A significant direct-photon yield is observed in both collision systems. A universal scaling is observed when the direct-photon pTp_T spectra for different center-of-mass energies and for different centrality selections at sNN=62.4\sqrt{s_{_{NN}}}=62.4 GeV is scaled with (dNch/dη)α(dN_{\rm ch}/d\eta)^{\alpha} for α=1.21±0.04\alpha=1.21{\pm}0.04. This scaling also holds true for direct-photon spectra from Au++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV measured earlier by PHENIX, as well as the spectra from Pb++Pb at sNN=2760\sqrt{s_{_{NN}}}=2760 GeV published by ALICE. The scaling power α\alpha seems to be independent of pTp_T, center of mass energy, and collision centrality. The spectra from different collision energies have a similar shape up to pTp_T of 2 GeV/cc. The spectra have a local inverse slope TeffT_{\rm eff} increasing with pTp_T of 0.174±0.0180.174\pm0.018 GeV/cc in the range 0.4<pT<1.30.4<p_T<1.3 GeV/cc and increasing to 0.289±0.0240.289\pm0.024 GeV/cc for 0.9<pT<2.10.9<p_T<2.1 GeV/cc. The observed similarity of low-pTp_T direct-photon production from sNN=39\sqrt{s_{_{NN}}}= 39 to 2760 GeV suggests a common source of direct photons for the different collision energies and event centrality selections, and suggests a comparable space-time evolution of direct-photon emission
    corecore