38 research outputs found

    Strengthening altitude knowledge: a delphi study to define minimum knowledge of altitude illness for laypersons traveling to high altitude

    Get PDF
    Introduction: A lack of knowledge among laypersons about the hazards of high-altitude exposure contributes to morbidity and mortality from acute mountain sickness (AMS), high-altitude cerebral edema (HACE), and high-altitude pulmonary edema (HAPE) among high-altitude travelers. There are guidelines regarding the recognition, prevention, and treatment of acute-altitude illness for experts, but essential knowledge for laypersons traveling to high altitudes has not been defined. We sought expert consensus on the essential knowledge required for people planning to travel to high altitudes. Methods: The Delphi method was used. The panel consisted of two moderators, a core expert group and a plenary expert group. The moderators made a preliminary list of statements defining the desired minimum knowledge for laypersons traveling to high altitudes, based on the relevant literature. These preliminary statements were then reviewed, supplemented, and modified by a core expert group. A list of 33 statements was then presented to a plenary group of experts in successive rounds. Results: It took three rounds to reach a consensus. Of the 10 core experts invited, 7 completed all the rounds. Of the 76 plenary experts, 41 (54%) participated in Round 1, and of these 41 a total of 32 (78%) experts completed all three rounds. The final list contained 28 statements in 5 categories (altitude physiology, sleeping at altitude, AMS, HACE, and HAPE). This list represents an expert consensus on the desired minimum knowledge for laypersons planning high-altitude travel. Conclusion: Using the Delphi method, the STrengthening Altitude Knowledge initiative yielded a set of 28 statements representing essential learning objectives for laypersons who plan to travel to high altitudes. This list could be used to develop educational interventions

    Thin film polycrystalline silicon nanowire biosensors

    Full text link
    Polysilicon nanowire biosensors have been fabricated using a top-down process and were used to determine the binding constant of two inflammatory biomarkers. A very low cost nanofabrication process was developed, based on simple and mature photolithography, thin film technology and plasma etching, enabling an easy route to mass manufacture. Antibodyfunctionalized nanowire sensors were used to detect the proteins interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-alpha) over a wide range of concentrations, demonstrating excellent sensitivity and selectivity, exemplified by a detection sensitivity of 10fM in the presence of a 100,000-fold excess of a non-target protein. Nanowire titration curves gave antibody-antigen dissociation constants in good agreement with low-salt enzyme-linked immunosorbent assays (ELISAs). This fabrication process produces high-quality nanowires that are suitable for lowcost mass production, providing a realistic route to the realization of disposable nanoelectronic Point-of-Care (PoC) devices
    corecore