9 research outputs found
Carbon-sensitive pedotransfer functions for plant available water
Currently accepted pedotransfer functions show negligible effect of management-induced changes to soil organic carbon (SOC) on plant available water holding capacity (θAWHC), while some studies show the ability to substantially increase θAWHC through management. The Soil Health Institute's North America Project to Evaluate Soil Health Measurements measured water content at field capacity using intact soil cores across 124 long-term research sites that contained increases in SOC as a result of management treatments such as reduced tillage and cover cropping. Pedotransfer functions were created for volumetric water content at field capacity (θFC) and permanent wilting point (θPWP). New pedotransfer functions had predictions of θAWHC that were similarly accurate compared with Saxton and Rawls when tested on samples from the National Soil Characterization database. Further, the new pedotransfer functions showed substantial effects of soil calcareousness and SOC on θAWHC. For an increase in SOC of 10 g kg–1 (1%) in noncalcareous soils, an average increase in θAWHC of 3.0 mm 100 mm–1 soil (0.03 m3 m–3) on average across all soil texture classes was found. This SOC related increase in θAWHC is about double previous estimates. Calcareous soils had an increase in θAWHC of 1.2 mm 100 mm–1 soil associated with a 10 g kg–1 increase in SOC, across all soil texture classes. New equations can aid in quantifying benefits of soil management practices that increase SOC and can be used to model the effect of changes in management on drought resilience.612-62
Selecting soil hydraulic properties as indicators of soil health: Measurement response to management and site characteristics
Farmers, scientists, and other soil health stakeholders require interpretable indicators of soil hydraulic function. Determining which indicators to use has been difficult because of measurement disconformity, spatial and temporal variability, recently established treatments, and the effect of site characteristics on management practice differences. The North American Project to Evaluate Soil Health Measurements includes 124 sites uniformly sampled across a range of soil health management practices in North America in 2019. We compare and recommend indicators of hydraulic function that best characterize soil health. We assessed the relationship of each indicator to a suite of soil inherent properties and climate variables, the response of each indicator to soil health management practices, the effect that soil inherent properties (clay content, sand content, and pH) and climatic variables (10-yr mean annual precipitation and temperature) had on response to management practices, and the relationship among the responses of the indicators to soil health management practices. Field capacity measured on intact cores (θFC_INTACT) was the best measure of soil hydraulic function, because it responded to management, represents a direct measure of soil hydraulic function, is proximal to stakeholder values, and its response to management was not significantly influenced by inherent and climatic variables. Other suitable indicators are bulk density, soil organic carbon (SOC), and aggregate stability, which are not direct measures of soil hydraulic function but do respond to management and may be practical in situations in which measuring θFC_INTACT is not. This study informs selection of soil health indicators to measure soil hydraulic function.1206-122
Evaluation of aggregate stability methods for soil health
Aggregate stability is a commonly used indicator of soil health because improvements in aggregate stability are related to reduced erodibility and improved soil–water dynamics. During the past 80 to 90 years, numerous methods have been developed to assess aggregate stability. Limited comparisons among the methods have resulted in varied magnitudes of response to soil health management practices and varied influences of inherent soil properties and climate. It is not clear whether selection of a specific method creates any advantage to the investigator. This study assessed four commonly used methods of measuring aggregate stability using data collected as part of the North American Project to Evaluate Soil Health Measurements. The methods included water stable aggregates using the Cornell Rainfall Simulator (WSACASH), wet sieved water stable aggregates (WSAARS), slaking captured and adapted from SLAKES smart-phone image recognition software (STAB10), and the mean weight diameter of water stable aggregates (MWD). Influence of climate and inherent soil properties at the continental scale were analyzed in addition to method responses to rotation diversity, cash crop count, residue management, organic nutrient amendments, cover crops, and tillage. The four methods were moderately correlated with each other. All methods were sensitive to differences in climate and inherent soil properties between sites, although to different degrees. None measured significant effects from rotation diversity or crop count, but all methods detected significant increases in aggregate stability resulting from reduced tillage. Significant increases or positive trends were observed for all methods in relation to cover cropping, increased residue retention, and organic amendments, except for STAB10, which expressed a slightly negative response to organic amendments. Considering these results, no single method was clearly superior and all four are viable options for measuring aggregate stability. Therefore, secondary considerations (e.g., cost, method availability, increased sensitivity to a specific management practice, or minimal within-treatment variability) driven by the needs of the investigator, should determine the most suitable method
An evaluation of carbon indicators of soil health in long-term agricultural experiments
Soil organic carbon (SOC) is closely tied to soil health. However, additional biological indicators may also provide insight about C dynamics and microbial activity. We used SOC and the other C indicators (potential C mineralization, permanganate oxidizable C, water extractable organic C, and β-glucosidase enzyme activity) from the North American Project to Evaluate Soil Health Measurements to examine the continental-scale drivers of these indicators, the relationships among indicators, and the effects of soil health practices on indicator values. All indicators had greater values at cooler temperatures, and most were greater with increased precipitation and clay content. The indicators were strongly correlated with each other at the site-level, with the strongest relationship between SOC and permanganate oxidizable C. The indicator values responded positively to decreased tillage, inclusion of cover crops, application of organic nutrients, and retention of crop residue, but not the number of harvested crops in a rotation. The effect of decreased tillage on the C indicators was generally greater at sites with higher precipitation. The magnitude and direction of the response to soil health practices was consistent across indicators within a site but measuring at least two indicators would provide additional confidence of the effects of management, especially for tillage. All C indicators responded to management, an essential criterion for evaluating soil health. Balancing the cost, sensitivity, interpretability, and availability at commercial labs, a 24-hr potential C mineralization assay could deliver the most benefit to measure in conjunction with SOC
