1,152 research outputs found
Counting matrices over finite fields with support on skew Young diagrams and complements of Rothe diagrams
We consider the problem of finding the number of matrices over a finite field
with a certain rank and with support that avoids a subset of the entries. These
matrices are a q-analogue of permutations with restricted positions (i.e., rook
placements). For general sets of entries these numbers of matrices are not
polynomials in q (Stembridge 98); however, when the set of entries is a Young
diagram, the numbers, up to a power of q-1, are polynomials with nonnegative
coefficients (Haglund 98).
In this paper, we give a number of conditions under which these numbers are
polynomials in q, or even polynomials with nonnegative integer coefficients. We
extend Haglund's result to complements of skew Young diagrams, and we apply
this result to the case when the set of entries is the Rothe diagram of a
permutation. In particular, we give a necessary and sufficient condition on the
permutation for its Rothe diagram to be the complement of a skew Young diagram
up to rearrangement of rows and columns. We end by giving conjectures
connecting invertible matrices whose support avoids a Rothe diagram and
Poincar\'e polynomials of the strong Bruhat order.Comment: 24 pages, 9 figures, 1 tabl
Exact quantum states of a general time-dependent quadratic system from classical action
A generalization of driven harmonic oscillator with time-dependent mass and
frequency, by adding total time-derivative terms to the Lagrangian, is
considered. The generalization which gives a general quadratic Hamiltonian
system does not change the classical equation of motion. Based on the
observation by Feynman and Hibbs, the propagators (kernels) of the systems are
calculated from the classical action, in terms of solutions of the classical
equation of motion: two homogeneous and one particular solutions. The kernels
are then used to find wave functions which satisfy the Schr\"{o}dinger
equation. One of the wave functions is shown to be that of a Gaussian pure
state. In every case considered, we prove that the kernel does not depend on
the way of choosing the classical solutions, while the wave functions depend on
the choice. The generalization which gives a rather complicated quadratic
Hamiltonian is simply interpreted as acting an unitary transformation to the
driven harmonic oscillator system in the Hamiltonian formulation.Comment: Submitted to Phys. Rev.
Assessing negative cognitive style: Development and validation of a short-form version of the Cognitive Style Questionnaire
The Cognitive Style Questionnaire (CSQ) is a frequently employed measure of negative cognitive style, associated with vulnerability to anxiety and depression. However, the CSQ’s length can limit its utility in research. We describe the development of a Short-Form version of the CSQ. After evaluation and modification of two pilot versions, the 8-item CSQ Short Form (CSQ-SF) was administered to a convenience sample of adults (N = 278). The CSQ-SF was found to have satisfactory internal reliability and test–retest reliability. It also exhibited construct validity by demonstrating predicted correlations with measures of depression and anxiety. Results suggest that the CSQ-SF is suitable for administration via the Internet
National geological screening : the Hampshire Basin and adjoining areas
This report is the published product of one of a series of studies covering England, Wales and Northern Ireland commissioned by Radioactive Waste Management (RWM) Ltd. The report provides geological information about the Hampshire Basin and adjoining areas region to underpin the process of national geological screening set out in the UK’s government White Paper Implementing geological disposal: a framework for the long-term management of higher activity radioactive waste (DECC, 2014). The report describes geological features relevant to the safety requirements of a geological disposal facility (GDF) for radioactive waste emplaced onshore and up to 20 km offshore at depths between 200 and 1000 m from surface. It is written for a technical audience but is intended to inform RWM in its discussions with communities interested in finding out about the potential for their area to host a GDF
Authorship ans aesthetics experiments: comparision of results between human and computational systems
[Abstract] This paper presents the results of two experiments comparing the functioning of a computational system and a group of humans when performing tasks related to art and aesthetics. The first experiment consists of the identification of a painting, while the second one uses the Maitland Graves’s aesthetic appreciation test. The proposed system employs a series of metrics based on complexity estimators and low level features. These metrics feed a learning system using neural networks. The computational approach achieves similar results to those achieved by humans, thus suggesting that the system captures some of the artistic style and aesthetics features which are relevant to the experiments performed
National geological screening : London and the Thames Valley
This report is the published product of one of a series of studies covering England, Wales and Northern Ireland commissioned by Radioactive Waste Management (RWM) Ltd. The report provides geological information about the London and the Thames Valley region to underpin the process of national geological screening set out in the UK Government’s White Paper Implementing geological disposal: a framework for the long-term management of higher activity radioactive waste (DECC, 2014). The report describes geological features relevant to the safety requirements of a geological disposal facility (GDF) for radioactive waste emplaced onshore and up to 20 km offshore at depths between 200 and 1000 m from surface. It is written for a technical audience but is intended to inform RWM in its discussions with communities interested in finding out about the potential for their area to host a GDF
Strontium isotope evidence for human mobility in the Neolithic of northern Greece
Strontium isotope ratios are widely used in archaeology to differentiate between local and non-local populations. Herein, strontium isotope ratios of 36 human tooth enamels from seven archaeological sites spanning the Early to Late Neolithic of northern Greece (7th–5th millennia B.C.E.) were analysed with the aim of providing new information relating to the movement of humans across the region. Local bioavailable 87Sr/86Sr signals were established using tooth enamel from 26 domestic animals from the same Neolithic sites. 87Sr/86Sr values of faunal enamel correlate well with predicted strontium isotope ratios of the local geology. This is consistent with animal management occurring at a local level, although at Late Neolithic sites strontium isotope values became more varied, potentially indicating changing herding practices. The strontium isotope analysis of human tooth enamel likewise suggests limited population movement within the Neolithic of northern Greece. Almost all individuals sampled exhibited 87Sr/86Sr values consistent with having spent their early life (during the period of tooth mineralisation) in the local area, although movement could have occurred between isotopically homo- geneous areas. The strontium isotope ratios of only three individuals lay outside of the local bioavailable 87Sr/86Sr range and these individuals are interpreted as having spent their early lives in a region with a more radiogenic biologically available 87Sr/86Sr. Mobility patterns determined using Sr isotope analysis supports the current evidence for movement and exchange observed through studies of pottery circulation. Suggesting limited movement in the Early and Middle Neolithic and greater movement in the Late Neolithic
Canonical quantization of so-called non-Lagrangian systems
We present an approach to the canonical quantization of systems with
equations of motion that are historically called non-Lagrangian equations. Our
viewpoint of this problem is the following: despite the fact that a set of
differential equations cannot be directly identified with a set of
Euler-Lagrange equations, one can reformulate such a set in an equivalent
first-order form which can always be treated as the Euler-Lagrange equations of
a certain action. We construct such an action explicitly. It turns out that in
the general case the hamiltonization and canonical quantization of such an
action are non-trivial problems, since the theory involves time-dependent
constraints. We adopt the general approach of hamiltonization and canonical
quantization for such theories (Gitman, Tyutin, 1990) to the case under
consideration. There exists an ambiguity (not reduced to a total time
derivative) in associating a Lagrange function with a given set of equations.
We present a complete description of this ambiguity. The proposed scheme is
applied to the quantization of a general quadratic theory. In addition, we
consider the quantization of a damped oscillator and of a radiating point-like
charge.Comment: 13 page
Convergent evolution of hydrogenosomes from mitochondria by gene transfer and loss.
Hydrogenosomes are H2-producing mitochondrial homologues found in some anaerobic microbial eukaryotes that provide a rare intracellular niche for H2-utilizing endosymbiotic archaea. Among ciliates, anaerobic and aerobic lineages are interspersed, demonstrating that the switch to an anaerobic lifestyle with hydrogenosomes has occurred repeatedly and independently. To investigate the molecular details of this transition we generated genomic and transcriptomic datasets from anaerobic ciliates representing three distinct lineages. Our data demonstrate that hydrogenosomes have evolved from ancestral mitochondria in each case and reveal different degrees of independent mitochondrial genome and proteome reductive evolution, including the first example of complete mitochondrial genome loss in ciliates. Intriguingly, the FeFe-hydrogenase used for generating H2 has a unique domain structure among eukaryotes and appears to have been present, potentially through a single lateral gene transfer from an unknown donor, in the common aerobic ancestor of all three lineages. The early acquisition and retention of FeFe-hydrogenase helps to explain the facility whereby mitochondrial function can be so radically modified within this diverse and ecologically important group of microbial eukaryotes
Structure, mass and stability of galactic disks
In this review I concentrate on three areas related to structure of disks in
spiral galaxies. First I will review the work on structure, kinematics and
dynamics of stellar disks. Next I will review the progress in the area of
flaring of HI layers. These subjects are relevant for the presence of dark
matter and lead to the conclusion that disk are in general not `maximal', have
lower M/L ratios than previously suspected and are locally stable w.r.t.
Toomre's Q criterion for local stability. I will end with a few words on
`truncations' in stellar disks.Comment: Invited review at "Galaxies and their Masks" for Ken Freeman's 70-th
birthday, Sossusvlei, Namibia, April 2010. A version with high-res. figures
is available at
http://www.astro.rug.nl/~vdkruit/jea3/homepage/Namibiachapter.pd
- …