5 research outputs found

    Extracellular matrix and its role in spermatogenesis

    No full text
    In adult mammalian testes, such as rats, Sertoli and germ cells at different stages of their development in the seminiferous epithelium are in close contact with the basement membrane, a modified form of extracellular matrix (ECM). In essence, Sertoli and germ cells in particular spermatogonia are “resting” on the basement membrane at different stages of the seminiferous epithelial cycle, relying on its structural and hormonal supports. Thus, it is not entirely unexpected that ECM plays a significant role in regulating spermatogenesis, particularly spermatogonia and Sertoli cells, and the blood-testis barrier (BTB) constituted by Sertoli cells since these cells are in physical contact with the basement membrane. Additionally, the basement membrane is also in close contact with the underlying collagen network and the myoid cell layers, which together with the lymphatic network, constitute the tunica propria. The seminiferous epithelium and the tunica propria, in turn, constitute the seminiferous tubule, which is the functional unit that produces spermatozoa via its interaction with Leydig cells in the interstitium. In short, the basement membrane and the underlying collagen network that create the acellular zone of the tunica propria may even facilitate cross-talk between the seminiferous epithelium, the myoid cells and cells in the interstitium. Recent studies in the field have illustrated the crucial role of ECM in supporting Sertoli and germ cell function in the seminiferous epithelium, including the BTB dynamics. In this chapter, we summarize some of the latest findings in the field regarding the functional role of ECM in spermatogenesis using the adult rat testis as a model. We also high light specific areas of research that deserve attention for investigators in the field

    Cross-talk between tight and anchoring junctions-lesson from the testis

    No full text
    Spermatogenesis takes place in the seminiferous tubules in adult testes such as rats, in which developing germ cells must traverse the seminiferous epithelium while spermatogonia (2n, diploid) undergo mitotic and meiotic divisions, and differentiate into elongated spermatids (1n, haploid). It is conceivable that this event involves extensive junction restructuring particularly at the blood-testis barrier (BTB, a structure that segregates the seminiferous epithelium into the basal and the adluminal compartments) that occurs at stages VII-VIII of the seminiferous epithelial cycle. As such, cross-talk between tight (TJ) and anchoring junctions [e.g., basal ectoplasmic specialization (basal ES), adherens junction (AJ), desmosome-like junction (DJ)] at the BTB must occur to coordinate the transient opening of the BTB to facilitate preleptotene spermatocyte migration. Interestingly, while there are extensively restructuring at the BTB during the epithelial cycle, the immunological barrier function of the BTB must be maintained without disruption even transiently. Recent studies using the androgen suppression and Adjudin models have shown that anchoring junction restructuring that leads to germ cell loss from the seminiferous epithelium also promotes the production of AJ (e.g., basal ES) proteins (such as N-cadherins, catenins) at the BTB site. We postulate the testis is using a similar mechanism during spermatogenesis at stage VIII of the epithelial cycle that these induced basal ES proteins, likely form a "patch" surrounding the BTB, transiently maintain the BTB integrity while TJ is "opened", such as induced by TGF-b3 or TNFa, to facilitate preleptotene spermatocyte migration. However, in other stages of the epithelial cycle other than VII and VIII when the BTB remains "closed" (for ∼10 days), anchoring junctions (e.g., AJ, DJ, and apical ES) restructuring continues to facilitate germ cell movement. Interestingly, the mechanism(s) that governs this communication between TJ and anchoring junction (e.g., basal ES and AJ) in the testis has remained obscure until recently. Herein, we provide a critical review based on the recently available data regarding the cross-talk between TJ and anchoring junction to allow simultaneous maintenance of the BTB and germ cell movement across the seminiferous epithelium. © 2008 Landes Bioscience and Springer Science+Business Media.link_to_subscribed_fulltex

    Literature

    No full text
    corecore