5 research outputs found

    Conformal Field Theory Approach to the 2-Impurity Kondo Problem: Comparison with Numerical Renormalization Group Results

    Full text link
    Numerical renormalization group and conformal field theory work indicate that the two impurity Kondo Hamiltonian has a non-Fermi liquid critical point separating the Kondo-screening phase from the inter-impurity singlet phase when particle-hole (P-H) symmetry is maintained. We clarify the circumstances under which this critical point occurs, pointing out that there are two types of P-H symmetry. Only one of them guarantees the occurance of the critical point. Much of the previous numerical work was done on models with the other type of P-H symmetry. We analyse this critical point using the boundary conformal field theory technique. The finite-size spectrum is presented in detail and compared with about 50 energy levels obtained using the numerical renormalization group. Various Green's functions, general renormalization group behaviour, and a hidden SO(7)SO(7) are analysed.Comment: 38 pages, RevTex. 2 new sections clarify the circumstances under which a model will exhibit the non-trivial critical point (hence potentially resolving disagreements with other Authors) and explain the hidden SO(7) symmetry of the model, relating it to an alternative approach of Sire et al. and Ga

    Nonlinear normal modes and band zones in granular chains with no precompression

    Full text link
    peer reviewedWe study standing waves (nonlinear normal modes—NNMs) and band zones in finite granular chains composed of spherical granular beads in Hertzian contact, with fixed boundary conditions. Although these are homogeneous dynamical systems in the notation of Rosenberg, we show that the discontinuous nature of the dynamics leads to interesting effects such as separation between beads, NNMs that appear as traveling waves (these are characterized as pseudo-waves), and localization phenomena. In the limit of infinite extent, we study band zones, i.e., pass and stop bands in the frequency–energy plane of these dynamical systems, and classify the essentially nonlinear responses that occur in these bands. Moreover, we show how the topologies of these bands significantly affect the forced dynamics of these granular media subject to narrowband excitations. This work provides a classification of the coherent (regular) intrinsic dynamics of one-dimensional homogeneous granular chains with no pre-compression, and provides a rigorous theoretical foundation for further systematic study of the dynamics of granular systems, e.g., the effects of disorders or clearances, discrete breathers, nonlinear localized modes, and high-frequency scattering by local disorders. Moreover, it contributes toward the design of granular media as shock protectors, and in the passive mitigation of transmission of unwanted disturbances
    corecore