13 research outputs found

    Itinerant electron metamagnetism in LaCo9_9Si4_4

    Full text link
    The strongly exchange enhanced Pauli paramagnet LaCo9_9Si4_4 is found to exhibit an itinerant metamagnetic phase transition with indications for metamagnetic quantum criticality. Our investigation comprises magnetic, specific heat, and NMR measurements as well as ab-initio electronic structure calculations. The critical field is about 3.5 T for H∣∣cH||c and 6 T for H⊥cH\bot c, which is the lowest value ever found for rare earth intermetallic compounds. In the ferromagnetic state there appears a moment of about 0.2 μB\mu_B/Co at the 16k16k Co-sites, but sigificantly smaller moments at the 4d and 16l16l Co-sites.Comment: 11 pages, 5 figures, PRB Rapid Communication, in prin

    Statistical Theory of Spin Relaxation and Diffusion in Solids

    Full text link
    A comprehensive theoretical description is given for the spin relaxation and diffusion in solids. The formulation is made in a general statistical-mechanical way. The method of the nonequilibrium statistical operator (NSO) developed by D. N. Zubarev is employed to analyze a relaxation dynamics of a spin subsystem. Perturbation of this subsystem in solids may produce a nonequilibrium state which is then relaxed to an equilibrium state due to the interaction between the particles or with a thermal bath (lattice). The generalized kinetic equations were derived previously for a system weakly coupled to a thermal bath to elucidate the nature of transport and relaxation processes. In this paper, these results are used to describe the relaxation and diffusion of nuclear spins in solids. The aim is to formulate a successive and coherent microscopic description of the nuclear magnetic relaxation and diffusion in solids. The nuclear spin-lattice relaxation is considered and the Gorter relation is derived. As an example, a theory of spin diffusion of the nuclear magnetic moment in dilute alloys (like Cu-Mn) is developed. It is shown that due to the dipolar interaction between host nuclear spins and impurity spins, a nonuniform distribution in the host nuclear spin system will occur and consequently the macroscopic relaxation time will be strongly determined by the spin diffusion. The explicit expressions for the relaxation time in certain physically relevant cases are given.Comment: 41 pages, 119 Refs. Corrected typos, added reference

    A Comparison of Dipterans from Ten Created and Ten Natural Wetlands

    No full text
    This study compares densities of common larval dipterans collected from areas dominated by Pontederia cordata in 10 natural and 10 created freshwater herbaceous wetlands in central Florida. At each wetland, 7 core. samples were collected from each of 5 stations during summer 1993. In addition, stem densities, vegetation areal coverage, pH, dissolved oxygen, water temperature, water depth, conductivity, sediment quality, and leaf litter were measured at 3 locations near each of the 5 stations in each wetland. Of the 57 dipteran taxa collected, 20 occurred with sufficient abundance to justify statistical comparison. Despite a large sampling effort, there were no significant differences in densities of 20 commonly occurring taxa found in created and natural wetlands after considering the effect of multiple univariate tests. Comparison of environmental variables showed significant differences in stem densities for vegetation other than P. cordata,, pH, conductivity, and sediment quality. Canonical correspondence analysis, used to relate environmental and biological variables, suggests that pH, conductivity, and sediment quality are only weakly related to dipteran community structure. Despite differences in environmental conditions, there is no convincing evidence of differences in natural and created wetland dipteran communities
    corecore