40 research outputs found

    The Imprint of Gravitational Waves on the Cosmic Microwave Background

    Get PDF
    Long-wavelength gravitational waves can induce significant temperature anisotropy in the cosmic microwave background. Distinguishing this from anisotropy induced by energy density fluctuations is critical for testing inflationary cosmology and theories of large-scale structure formation. We describe full radiative transport calculations of the two contributions and show that they differ dramatically at angular scales below a few degrees. We show how anisotropy experiments probing large- and small-angular scales can combine to distinguish the imprint due to gravitational waves.Comment: 11 pages, Penn Preprint-UPR-

    Axion-photon Couplings in Invisible Axion Models

    Get PDF
    We reexamine the axion-photon couplings in various invisible axion models motivated by the recent proposal of using optical interferometry at the ASST facility in the SSCL to search for axion. We illustrate that the assignment of U(1)PQU(1)_{PQ} charges for the fermion fields plays an important role in determining the couplings. Several simple non-minimal invisible axion models with suppressed and enhanced axion-photon couplings are constructed, respectively. We also discuss the implications of possible new experiments to detect solar axions by conversion to XX-rays in a static magnetic apparatus tracking the sun.Comment: 14 pages, LaTeX fil

    Scale invariant scalar metric fluctuations during inflation: non-perturbative formalism from a 5D vacuum

    Full text link
    We extend to 5D an approach of a 4D non-perturbative formalism to study scalar metric fluctuations of a 5D Riemann-flat de Sitter background metric. In contrast with the results obtained in 4D, the spectrum of cosmological scalar metric fluctuations during inflation can be scale invariant and the background inflaton field can take sub-Planckian values.Comment: final version to be published in Eur. Phys. J.

    Limits on the gravity wave contribution to microwave anisotropies

    Get PDF
    We present limits on the fraction of large angle microwave anisotropies which could come from tensor perturbations. We use the COBE results as well as smaller scale CMB observations, measurements of galaxy correlations, abundances of galaxy clusters, and Lyman alpha absorption cloud statistics. Our aim is to provide conservative limits on the tensor-to-scalar ratio for standard inflationary models. For power-law inflation, for example, we find T/S<0.52 at 95% confidence, with a similar constraint for phi^p potentials. However, for models with tensor amplitude unrelated to the scalar spectral index it is still currently possible to have T/S>1.Comment: 23 pages, 7 figures, accepted for publication in Phys. Rev. D. Calculations extended to blue spectral index, Fig. 6 added, discussion of results expande

    Topological Defects and CMB anisotropies : Are the predictions reliable ?

    Get PDF
    We consider a network of topological defects which can partly decay into neutrinos, photons, baryons, or Cold Dark Matter. We find that the degree-scale amplitude of the cosmic microwave background (CMB) anisotropies as well as the shape of the matter power spectrum can be considerably modified when such a decay is taken into account. We conclude that present predictions concerning structure formation by defects might be unreliable.Comment: 14 pages, accepted for publication in PR

    Inflation at Low Scales: General Analysis and a Detailed Model

    Full text link
    Models of inflationary cosmology based on spontaneous symmetry breaking typically suffer from the shortcoming that the symmetry breaking scale is driven to nearly the Planck scale by observational constraints. In this paper we investigate inflationary potentials in a general context, and show that this difficulty is characteristic only of potentials V(Ď•)V(\phi) dominated near their maxima by terms of order Ď•2\phi^2. We find that potentials dominated by terms of order Ď•m\phi^m with \hbox{m>2m > 2} can satisfy observational constraints at an arbitrary symmetry breaking scale. Of particular interest, the spectral index of density fluctuations is shown to depend only on the order of the lowest non-vanishing derivative of V(Ď•)V(\phi) near the maximum. This result is illustrated in the context of a specific model, with a broken SO(3){\rm SO(3)} symmetry, in which the potential is generated by gauge boson loops.Comment: Submitted to Phys. Rev. D. 32 Pages, REVTeX. No figure

    Hypersurface-Invariant Approach to Cosmological Perturbations

    Get PDF
    Using Hamilton-Jacobi theory, we develop a formalism for solving semi-classical cosmological perturbations which does not require an explicit choice of time-hypersurface. The Hamilton-Jacobi equation for gravity interacting with matter (either a scalar or dust field) is solved by making an Ansatz which includes all terms quadratic in the spatial curvature. Gravitational radiation and scalar perturbations are treated on an equal footing. Our technique encompasses linear perturbation theory and it also describes some mild nonlinear effects. As a concrete example of the method, we compute the galaxy-galaxy correlation function as well as large-angle microwave background fluctuations for power-law inflation, and we compare with recent observations.Comment: 51 pages, Latex 2.09 ALBERTA THY/20-94, DAMTP R94/25 To appear in Phys. Rev.

    Observations of the High Redshift Universe

    Get PDF
    (Abridged) In these lectures aimed for non-specialists, I review progress in understanding how galaxies form and evolve. Both the star formation history and assembly of stellar mass can be empirically traced from redshifts z~6 to the present, but how the various distant populations inter-relate and how stellar assembly is regulated by feedback and environmental processes remains unclear. I also discuss how these studies are being extended to locate and characterize the earlier sources beyond z~6. Did early star-forming galaxies contribute significantly to the reionization process and over what period did this occur? Neither theory nor observations are well-developed in this frontier topic but the first results presented here provide important guidance on how we will use more powerful future facilities.Comment: To appear in `First Light in Universe', Saas-Fee Advanced Course 36, Swiss Soc. Astrophys. Astron. in press. 115 pages, 64 figures (see http://www.astro.caltech.edu/~rse/saas-fee.pdf for hi-res figs.) For lecture ppt files see http://obswww.unige.ch/saas-fee/preannouncement/course_pres/overview_f.htm

    Introduction and Historical Review

    Get PDF
    corecore