682 research outputs found

    Thermal-Mechanical Properties of Polyurethane-Clay Shape Memory Polymer Nanocomposites

    Get PDF
    Shape memory nanocomposites of polyurethane (PU)-clay were fabricated by melt mixing of PU and nano-clay. Based on nano-indentation and microhardness tests, the strength of the nanocomposites increased dramatically as a function of clay content, which is attributed to the enhanced nanoclay–polymer interactions. Thermal mechanical experiments demonstrated good mechanical and shape memory effects of the nanocomposites. Full shape memory recovery was displayed by both the pure PU and PU-clay nanocomposites.

    Relaxation kinetics in two-dimensional structures

    Full text link
    We have studied the approach to equilibrium of islands and pores in two dimensions. The two-regime scenario observed when islands evolve according to a set of particular rules, namely relaxation by steps at low temperature and smooth at high temperature, is generalized to a wide class of kinetic models and the two kinds of structures. Scaling laws for equilibration times are analytically derived and confirmed by kinetic Monte Carlo simulations.Comment: 6 pages, 7 figures, 1 tabl

    The Transition to a Giant Vortex Phase in a Fast Rotating Bose-Einstein Condensate

    Get PDF
    We study the Gross-Pitaevskii (GP) energy functional for a fast rotating Bose-Einstein condensate on the unit disc in two dimensions. Writing the coupling parameter as 1 / \eps^2 we consider the asymptotic regime \eps \to 0 with the angular velocity Ω\Omega proportional to (\eps^2|\log\eps|)^{-1} . We prove that if \Omega = \Omega_0 (\eps^2|\log\eps|)^{-1} and Ω0>2(3π)−1 \Omega_0 > 2(3\pi)^{-1} then a minimizer of the GP energy functional has no zeros in an annulus at the boundary of the disc that contains the bulk of the mass. The vorticity resides in a complementary `hole' around the center where the density is vanishingly small. Moreover, we prove a lower bound to the ground state energy that matches, up to small errors, the upper bound obtained from an optimal giant vortex trial function, and also that the winding number of a GP minimizer around the disc is in accord with the phase of this trial function.Comment: 52 pages, PDFLaTex. Minor corrections, sign convention modified. To be published in Commun. Math. Phy

    Structural and Magnetic Properties of Trigonal Iron

    Full text link
    First principles calculations of the electronic structure of trigonal iron were performed using density function theory. The results are used to predict lattice spacings, magnetic moments and elastic properties; these are in good agreement with experiment for both the bcc and fcc structures. We find however, that in extracting these quantities great care must be taken in interpreting numerical fits to the calculated total energies. In addition, the results for bulk iron give insight into the properties of thin iron films. Thin films grown on substrates with mismatched lattice constants often have non-cubic symmetry. If they are thicker than a few monolayers their electronic structure is similar to a bulk material with an appropriately distorted geometry, as in our trigonal calculations. We recast our bulk results in terms of an iron film grown on the (111) surface of an fcc substrate, and find the predicted strain energies and moments accurately reflect the trends for iron growth on a variety of substrates.Comment: 11 pages, RevTeX,4 tar'd,compressed, uuencoded Postscript figure

    Static hybrid quarkonium potential with improved staggered quarks

    Get PDF
    We are studying the effects of light dynamical quarks on the excitation energies of a flux tube between a static quark and antiquark. We report preliminary results of an analysis of the ground state potential and the Σg′+\Sigma^{\prime+}_g and Πu\Pi_u potentials. We have measured these potentials on closely matched ensembles of gauge configurations, generated in the quenched approximation and with 2+1 flavors of Asqtad improved staggered quarks.Comment: Lattice2002(heavyquark

    A gamma- and X-ray detector for cryogenic, high magnetic field applications

    Full text link
    As part of an experiment to measure the spectrum of photons emitted in beta-decay of the free neutron, we developed and operated a detector consisting of 12 bismuth germanate (BGO) crystals coupled to avalanche photodiodes (APDs). The detector was operated near liquid nitrogen temperature in the bore of a superconducting magnet and registered photons with energies from 5 keV to 1000 keV. To enlarge the detection range, we also directly detected soft X-rays with energies between 0.2 keV and 20 keV with three large area APDs. The construction and operation of the detector is presented, as well as information on operation of APDs at cryogenic temperatures

    Multi-timescale Solar Cycles and the Possible Implications

    Full text link
    Based on analysis of the annual averaged relative sunspot number (ASN) during 1700 -- 2009, 3 kinds of solar cycles are confirmed: the well-known 11-yr cycle (Schwabe cycle), 103-yr secular cycle (numbered as G1, G2, G3, and G4, respectively since 1700); and 51.5-yr Cycle. From similarities, an extrapolation of forthcoming solar cycles is made, and found that the solar cycle 24 will be a relative long and weak Schwabe cycle, which may reach to its apex around 2012-2014 in the vale between G3 and G4. Additionally, most Schwabe cycles are asymmetric with rapidly rising-phases and slowly decay-phases. The comparisons between ASN and the annual flare numbers with different GOES classes (C-class, M-class, X-class, and super-flare, here super-flare is defined as ≥\geq X10.0) and the annal averaged radio flux at frequency of 2.84 GHz indicate that solar flares have a tendency: the more powerful of the flare, the later it takes place after the onset of the Schwabe cycle, and most powerful flares take place in the decay phase of Schwabe cycle. Some discussions on the origin of solar cycles are presented.Comment: 8 pages, 4 figure

    Vortex Rings in Fast Rotating Bose-Einstein Condensates

    Full text link
    When Bose-Eintein condensates are rotated sufficiently fast, a giant vortex phase appears, that is the condensate becomes annular with no vortices in the bulk but a macroscopic phase circulation around the central hole. In a former paper [M. Correggi, N. Rougerie, J. Yngvason, {\it arXiv:1005.0686}] we have studied this phenomenon by minimizing the two dimensional Gross-Pitaevskii energy on the unit disc. In particular we computed an upper bound to the critical speed for the transition to the giant vortex phase. In this paper we confirm that this upper bound is optimal by proving that if the rotation speed is taken slightly below the threshold there are vortices in the condensate. We prove that they gather along a particular circle on which they are evenly distributed. This is done by providing new upper and lower bounds to the GP energy.Comment: to appear in Archive of Rational Mechanics and Analysi

    Radiative β decay of the free neutron

    Get PDF
    The theory of quantum electrodynamics predicts that the β decay of the neutron into a proton, electron, and antineutrino is accompanied by a continuous spectrum of emitted photons described as inner bremsstrahlung. While this phenomenon has been observed in nuclear β decay and electron-capture decay for many years, it has only been recently observed in free-neutron decay. We present a detailed discussion of an experiment in which the radiative decay mode of the free neutron was observed. In this experiment, the branching ratio for this rare decay was determined by recording photons that were correlated with both the electron and proton emitted in neutron decay. We determined the branching ratio for photons with energy between 15 and 340 keV to be (3.09±0.32)×10-3 (68% level of confidence), where the uncertainty is dominated by systematic effects. This value for the branching ratio is consistent with theoretical predictions. The characteristic energy spectrum of the radiated photons, which differs from the uncorrelated background spectrum, is also consistent with the theoretical spectrum

    Coherent states for exactly solvable potentials

    Full text link
    A general algebraic procedure for constructing coherent states of a wide class of exactly solvable potentials e.g., Morse and P{\"o}schl-Teller, is given. The method, {\it a priori}, is potential independent and connects with earlier developed ones, including the oscillator based approaches for coherent states and their generalizations. This approach can be straightforwardly extended to construct more general coherent states for the quantum mechanical potential problems, like the nonlinear coherent states for the oscillators. The time evolution properties of some of these coherent states, show revival and fractional revival, as manifested in the autocorrelation functions, as well as, in the quantum carpet structures.Comment: 11 pages, 4 eps figures, uses graphicx packag
    • …
    corecore