985 research outputs found

    A simple proof of Hardy-Lieb-Thirring inequalities

    Get PDF
    We give a short and unified proof of Hardy-Lieb-Thirring inequalities for moments of eigenvalues of fractional Schroedinger operators. The proof covers the optimal parameter range. It is based on a recent inequality by Solovej, Soerensen, and Spitzer. Moreover, we prove that any non-magnetic Lieb-Thirring inequality implies a magnetic Lieb-Thirring inequality (with possibly a larger constant).Comment: 12 page

    Weighted Supermembrane Toy Model

    Full text link
    A weighted Hilbert space approach to the study of zero-energy states of supersymmetric matrix models is introduced. Applied to a related but technically simpler model, it is shown that the spectrum of the corresponding weighted Hamiltonian simplifies to become purely discrete for sufficient weights. This follows from a bound for the number of negative eigenvalues of an associated matrix-valued Schr\"odinger operator.Comment: 18 pages, 2 figures; to appear in Lett. Math. Phys

    Binding of Polarons and Atoms at Threshold

    Get PDF
    If the polaron coupling constant α\alpha is large enough, bipolarons or multi-polarons will form. When passing through the critical αc\alpha_c from above, does the radius of the system simply get arbitrarily large or does it reach a maximum and then explodes? We prove that it is always the latter. We also prove the analogous statement for the Pekar-Tomasevich (PT) approximation to the energy, in which case there is a solution to the PT equation at αc\alpha_c. Similarly, we show that the same phenomenon occurs for atoms, e.g., helium, at the critical value of the nuclear charge. Our proofs rely only on energy estimates, not on a detailed analysis of the Schr\"odinger equation, and are very general. They use the fact that the Coulomb repulsion decays like 1/r1/r, while `uncertainty principle' localization energies decay more rapidly, as 1/r21/r^2.Comment: 19 page

    Scott correction for large atoms and molecules in a self-generated magnetic field

    Full text link
    We consider a large neutral molecule with total nuclear charge ZZ in non-relativistic quantum mechanics with a self-generated classical electromagnetic field. To ensure stability, we assume that Z\al^2\le \kappa_0 for a sufficiently small κ0\kappa_0, where \al denotes the fine structure constant. We show that, in the simultaneous limit ZZ\to\infty, \al\to 0 such that \kappa =Z\al^2 is fixed, the ground state energy of the system is given by a two term expansion c1Z7/3+c2(κ)Z2+o(Z2)c_1Z^{7/3} + c_2(\kappa) Z^2 + o(Z^2). The leading term is given by the non-magnetic Thomas-Fermi theory. Our result shows that the magnetic field affects only the second (so-called Scott) term in the expansion

    Nonperturbative aspects of the quark-photon vertex

    Full text link
    The electromagnetic interaction with quarks is investigated through a relativistic, electromagnetic gauge-invariant treatment. Gluon dressing of the quark-photon vertex and the quark self-energy functions is described by the inhomogeneous Bethe-Salpeter equation in the ladder approximation and the Schwinger-Dyson equation in the rainbow approximation respectively. Results for the calculation of the quark-photon vertex are presented in both the time-like and space-like regions of photon momentum squared, however emphasis is placed on the space-like region relevant to electron scattering. The treatment presented here simultaneously addresses the role of dynamically generated qqˉq\bar{q} vector bound states and the approach to asymptotic behavior. The resulting description is therefore applicable over the entire range of momentum transfers available in electron scattering experiments. Input parameters are limited to the model gluon two-point function, which is chosen to reflect confinement and asymptotic freedom, and are largely constrained by the obtained bound-state spectrum.Comment: 8 figures available on request by email, 25 pages, Revtex, DOE/ER/40561-131-INT94-00-5

    Eigenvalue estimates for non-selfadjoint Dirac operators on the real line

    Get PDF
    We show that the non-embedded eigenvalues of the Dirac operator on the real line with non-Hermitian potential VV lie in the disjoint union of two disks in the right and left half plane, respectively, provided that the L1normL^1-norm of VV is bounded from above by the speed of light times the reduced Planck constant. An analogous result for the Schr\"odinger operator, originally proved by Abramov, Aslanyan and Davies, emerges in the nonrelativistic limit. For massless Dirac operators, the condition on VV implies the absence of nonreal eigenvalues. Our results are further generalized to potentials with slower decay at infinity. As an application, we determine bounds on resonances and embedded eigenvalues of Dirac operators with Hermitian dilation-analytic potentials

    The External Field Dependence of the BCS Critical Temperature

    Get PDF
    We consider the Bardeen–Cooper–Schrieffer free energy functional for particles interacting via a two-body potential on a microscopic scale and in the presence of weak external fields varying on a macroscopic scale. We study the influence of the external fields on the critical temperature. We show that in the limit where the ratio between the microscopic and macroscopic scale tends to zero, the next to leading order of the critical temperature is determined by the lowest eigenvalue of the linearization of the Ginzburg–Landau equation

    On the String Consensus Problem and the Manhattan Sequence Consensus Problem

    Full text link
    In the Manhattan Sequence Consensus problem (MSC problem) we are given kk integer sequences, each of length ll, and we are to find an integer sequence xx of length ll (called a consensus sequence), such that the maximum Manhattan distance of xx from each of the input sequences is minimized. For binary sequences Manhattan distance coincides with Hamming distance, hence in this case the string consensus problem (also called string center problem or closest string problem) is a special case of MSC. Our main result is a practically efficient O(l)O(l)-time algorithm solving MSC for k5k\le 5 sequences. Practicality of our algorithms has been verified experimentally. It improves upon the quadratic algorithm by Amir et al.\ (SPIRE 2012) for string consensus problem for k=5k=5 binary strings. Similarly as in Amir's algorithm we use a column-based framework. We replace the implied general integer linear programming by its easy special cases, due to combinatorial properties of the MSC for k5k\le 5. We also show that for a general parameter kk any instance can be reduced in linear time to a kernel of size k!k!, so the problem is fixed-parameter tractable. Nevertheless, for k4k\ge 4 this is still too large for any naive solution to be feasible in practice.Comment: accepted to SPIRE 201

    Extended quantum conditional entropy and quantum uncertainty inequalities

    Get PDF
    Quantum states can be subjected to classical measurements, whose incompatibility, or uncertainty, can be quantified by a comparison of certain entropies. There is a long history of such entropy inequalities between position and momentum. Recently these inequalities have been generalized to the tensor product of several Hilbert spaces and we show here how their derivations can be shortened to a few lines and how they can be generalized. All the recently derived uncertainty relations utilize the strong subadditivity (SSA) theorem; our contribution relies on directly utilizing the proof technique of the original derivation of SSA.Comment: 4 page

    Low-energy QCD: Chiral coefficients and the quark-quark interaction

    Full text link
    A detailed investigation of the low-energy chiral expansion is presented within a model truncation of QCD. The truncation allows for a phenomenological description of the quark-quark interaction in a framework which maintains the global symmetries of QCD and permits a 1/Nc1/N_c expansion. The model dependence of the chiral coefficients is tested for several forms of the quark-quark interaction by varying the form of the running coupling, α(q2)\alpha (q^2), in the infrared region. The pattern in the coefficients that arises at tree level is consistent with large NcN_c QCD, and is related to the model truncation.Comment: 28 pages, Latex, 6 postscript figures available on request to [email protected]
    corecore