3 research outputs found

    A New Approach to Background Subtraction in Low-Energy Neutrino Experiments

    Get PDF
    We discuss a new method to extract neutrino signals in low energy experiments. In this scheme the symmetric nature of most backgrounds allows for direct cancellation from data. The application of this technique to the Palo Verde reactor neutrino oscillation experiment allowed us to reduce the measurement errors on the anti-neutrino flux from ∼20\sim 20% to ∼10\sim 10%. We expect this method to substantially improve the data quality in future low background experiments such as KamLAND and LENS.Comment: 7 pages, 2 figure

    Detection of Supernova Neutrinos by Neutrino-Proton Elastic Scattering

    Get PDF
    We propose that neutrino-proton elastic scattering, ν+p→ν+p\nu + p \to \nu + p, can be used for the detection of supernova neutrinos in scintillator detectors. Though the proton recoil kinetic energy spectrum is soft, with Tp≃2Eν2/MpT_p \simeq 2 E_\nu^2/M_p, and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from νˉe+p→e++n\bar{\nu}_e + p \to e^+ + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy and temperature of νμ\nu_\mu, ντ\nu_\tau, νˉμ\bar{\nu}_\mu, and νˉτ\bar{\nu}_\tau. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos.Comment: 10 pages, 9 figures, revtex
    corecore