28 research outputs found
Fitting the integrated Spectral Energy Distributions of Galaxies
Fitting the spectral energy distributions (SEDs) of galaxies is an almost
universally used technique that has matured significantly in the last decade.
Model predictions and fitting procedures have improved significantly over this
time, attempting to keep up with the vastly increased volume and quality of
available data. We review here the field of SED fitting, describing the
modelling of ultraviolet to infrared galaxy SEDs, the creation of
multiwavelength data sets, and the methods used to fit model SEDs to observed
galaxy data sets. We touch upon the achievements and challenges in the major
ingredients of SED fitting, with a special emphasis on describing the interplay
between the quality of the available data, the quality of the available models,
and the best fitting technique to use in order to obtain a realistic
measurement as well as realistic uncertainties. We conclude that SED fitting
can be used effectively to derive a range of physical properties of galaxies,
such as redshift, stellar masses, star formation rates, dust masses, and
metallicities, with care taken not to over-interpret the available data. Yet
there still exist many issues such as estimating the age of the oldest stars in
a galaxy, finer details ofdust properties and dust-star geometry, and the
influences of poorly understood, luminous stellar types and phases. The
challenge for the coming years will be to improve both the models and the
observational data sets to resolve these uncertainties. The present review will
be made available on an interactive, moderated web page (sedfitting.org), where
the community can access and change the text. The intention is to expand the
text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics &
Space Scienc
Baryons: What, When and Where?
We review the current state of empirical knowledge of the total budget of
baryonic matter in the Universe as observed since the epoch of reionization.
Our summary examines on three milestone redshifts since the reionization of H
in the IGM, z = 3, 1, and 0, with emphasis on the endpoints. We review the
observational techniques used to discover and characterize the phases of
baryons. In the spirit of the meeting, the level is aimed at a diverse and
non-expert audience and additional attention is given to describe how space
missions expected to launch within the next decade will impact this scientific
field.Comment: Proceedings Review for "Astrophysics in the Next Decade: JWST and
Concurrent Facilities", ed. X. Tielens, 38 pages, 10 color figures. Revised
to address comments from the communit
Novel genetic loci associated with hippocampal volume
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
Observations of the High Redshift Universe
(Abridged) In these lectures aimed for non-specialists, I review progress in
understanding how galaxies form and evolve. Both the star formation history and
assembly of stellar mass can be empirically traced from redshifts z~6 to the
present, but how the various distant populations inter-relate and how stellar
assembly is regulated by feedback and environmental processes remains unclear.
I also discuss how these studies are being extended to locate and characterize
the earlier sources beyond z~6. Did early star-forming galaxies contribute
significantly to the reionization process and over what period did this occur?
Neither theory nor observations are well-developed in this frontier topic but
the first results presented here provide important guidance on how we will use
more powerful future facilities.Comment: To appear in `First Light in Universe', Saas-Fee Advanced Course 36,
Swiss Soc. Astrophys. Astron. in press. 115 pages, 64 figures (see
http://www.astro.caltech.edu/~rse/saas-fee.pdf for hi-res figs.) For lecture
ppt files see
http://obswww.unige.ch/saas-fee/preannouncement/course_pres/overview_f.htm
Recommended from our members
Characterization of a 1,4-. beta. -D-glucan synthase from Dictyostelium discoideum
Various aspects of research concerning Dictyostelium discoideum are presented. The initial focus of this project was upon: the characterization of potential probes for the cellulose synthase (antibody and nucleic acid), the determination of the cultural induction conditions of cellulose synthesis, the solubilization of the enzyme activity, the development of a non-inhibitory disruption buffer, the generation and isolation of mutant strains deficient in cellulose synthesis, and the development of the capability to determine the degree of polymerization of the in vitro product. I have briefly summarized our most significant findings with only selected data sets being shown in this report in the interest of brevity
Novel genetic loci associated with hippocampal volume
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer’s disease (rg=−0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness