205 research outputs found

    Improved Bounds on the Phase Transition for the Hard-Core Model in 2-Dimensions

    Full text link
    For the hard-core lattice gas model defined on independent sets weighted by an activity λ\lambda, we study the critical activity λc(Z2)\lambda_c(\mathbb{Z}^2) for the uniqueness/non-uniqueness threshold on the 2-dimensional integer lattice Z2\mathbb{Z}^2. The conjectured value of the critical activity is approximately 3.7963.796. Until recently, the best lower bound followed from algorithmic results of Weitz (2006). Weitz presented an FPTAS for approximating the partition function for graphs of constant maximum degree Δ\Delta when λ<λc(TΔ)\lambda<\lambda_c(\mathbb{T}_\Delta) where TΔ\mathbb{T}_\Delta is the infinite, regular tree of degree Δ\Delta. His result established a certain decay of correlations property called strong spatial mixing (SSM) on Z2\mathbb{Z}^2 by proving that SSM holds on its self-avoiding walk tree Tsawσ(Z2)T_{\mathrm{saw}}^\sigma(\mathbb{Z}^2) where σ=(σv)vZ2\sigma=(\sigma_v)_{v\in \mathbb{Z}^2} and σv\sigma_v is an ordering on the neighbors of vertex vv. As a consequence he obtained that λc(Z2)λc(T4)=1.675\lambda_c(\mathbb{Z}^2)\geq\lambda_c( \mathbb{T}_4) = 1.675. Restrepo et al. (2011) improved Weitz's approach for the particular case of Z2\mathbb{Z}^2 and obtained that λc(Z2)>2.388\lambda_c(\mathbb{Z}^2)>2.388. In this paper, we establish an upper bound for this approach, by showing that, for all σ\sigma, SSM does not hold on Tsawσ(Z2)T_{\mathrm{saw}}^\sigma(\mathbb{Z}^2) when λ>3.4\lambda>3.4. We also present a refinement of the approach of Restrepo et al. which improves the lower bound to λc(Z2)>2.48\lambda_c(\mathbb{Z}^2)>2.48.Comment: 19 pages, 1 figure. Polished proofs and examples compared to earlier versio

    Ordering and Demixing Transitions in Multicomponent Widom-Rowlinson Models

    Full text link
    We use Monte Carlo techniques and analytical methods to study the phase diagram of multicomponent Widom-Rowlinson models on a square lattice: there are M species all with the same fugacity z and a nearest neighbor hard core exclusion between unlike particles. Simulations show that for M between two and six there is a direct transition from the gas phase at z < z_d (M) to a demixed phase consisting mostly of one species at z > z_d (M) while for M \geq 7 there is an intermediate ``crystal phase'' for z lying between z_c(M) and z_d(M). In this phase, which is driven by entropy, particles, independent of species, preferentially occupy one of the sublattices, i.e. spatial symmetry but not particle symmetry is broken. The transition at z_d(M) appears to be first order for M \geq 5 putting it in the Potts model universality class. For large M the transition between the crystalline and demixed phase at z_d(M) can be proven to be first order with z_d(M) \sim M-2 + 1/M + ..., while z_c(M) is argued to behave as \mu_{cr}/M, with \mu_{cr} the value of the fugacity at which the one component hard square lattice gas has a transition, and to be always of the Ising type. Explicit calculations for the Bethe lattice with the coordination number q=4 give results similar to those for the square lattice except that the transition at z_d(M) becomes first order at M>2. This happens for all q, consistent with the model being in the Potts universality class.Comment: 26 pages, 15 postscript figure

    Phase coexistence of gradient Gibbs states

    Full text link
    We consider the (scalar) gradient fields η=(ηb)\eta=(\eta_b)--with bb denoting the nearest-neighbor edges in Z2\Z^2--that are distributed according to the Gibbs measure proportional to \texte^{-\beta H(\eta)}\nu(\textd\eta). Here H=bV(ηb)H=\sum_bV(\eta_b) is the Hamiltonian, VV is a symmetric potential, β>0\beta>0 is the inverse temperature, and ν\nu is the Lebesgue measure on the linear space defined by imposing the loop condition ηb1+ηb2=ηb3+ηb4\eta_{b_1}+\eta_{b_2}=\eta_{b_3}+\eta_{b_4} for each plaquette (b1,b2,b3,b4)(b_1,b_2,b_3,b_4) in Z2\Z^2. For convex VV, Funaki and Spohn have shown that ergodic infinite-volume Gibbs measures are characterized by their tilt. We describe a mechanism by which the gradient Gibbs measures with non-convex VV undergo a structural, order-disorder phase transition at some intermediate value of inverse temperature β\beta. At the transition point, there are at least two distinct gradient measures with zero tilt, i.e., Eηb=0E \eta_b=0.Comment: 3 figs, PTRF style files include

    Shock waves in two-dimensional granular flow: effects of rough walls and polydispersity

    Get PDF
    We have studied the two-dimensional flow of balls in a small angle funnel, when either the side walls are rough or the balls are polydisperse. As in earlier work on monodisperse flows in smooth funnels, we observe the formation of kinematic shock waves/density waves. We find that for rough walls the flows are more disordered than for smooth walls and that shock waves generally propagate more slowly. For rough wall funnel flow, we show that the shock velocity and frequency obey simple scaling laws. These scaling laws are consistent with those found for smooth wall flow, but here they are cleaner since there are fewer packing-site effects and we study a wider range of parameters. For pipe flow (parallel side walls), rough walls support many shock waves, while smooth walls exhibit fewer or no shock waves. For funnel flows of balls with varying sizes, we find that flows with weak polydispersity behave qualitatively similar to monodisperse flows. For strong polydispersity, scaling breaks down and the shock waves consist of extended areas where the funnel is blocked completely.Comment: 11 pages, 15 figures; accepted for PR

    Mean Field Theory of Sandpile Avalanches: from the Intermittent to the Continuous Flow Regime

    Full text link
    We model the dynamics of avalanches in granular assemblies in partly filled rotating cylinders using a mean-field approach. We show that, upon varying the cylinder angular velocity ω\omega, the system undergoes a hysteresis cycle between an intermittent and a continuous flow regimes. In the intermittent flow regime, and approaching the transition, the avalanche duration exhibits critical slowing down with a temporal power-law divergence. Upon adding a white noise term, and close to the transition, the distribution of avalanche durations is also a power-law. The hysteresis, as well as the statistics of avalanche durations, are in good qualitative agreement with recent experiments in partly filled rotating cylinders.Comment: 4 pages, RevTeX 3.0, postscript figures 1, 3 and 4 appended

    Sequential cavity method for computing free energy and surface pressure

    Full text link
    We propose a new method for the problems of computing free energy and surface pressure for various statistical mechanics models on a lattice Zd\Z^d. Our method is based on representing the free energy and surface pressure in terms of certain marginal probabilities in a suitably modified sublattice of Zd\Z^d. Then recent deterministic algorithms for computing marginal probabilities are used to obtain numerical estimates of the quantities of interest. The method works under the assumption of Strong Spatial Mixing (SSP), which is a form of a correlation decay. We illustrate our method for the hard-core and monomer-dimer models, and improve several earlier estimates. For example we show that the exponent of the monomer-dimer coverings of Z3\Z^3 belongs to the interval [0.78595,0.78599][0.78595,0.78599], improving best previously known estimate of (approximately) [0.7850,0.7862][0.7850,0.7862] obtained in \cite{FriedlandPeled},\cite{FriedlandKropLundowMarkstrom}. Moreover, we show that given a target additive error ϵ>0\epsilon>0, the computational effort of our method for these two models is (1/ϵ)O(1)(1/\epsilon)^{O(1)} \emph{both} for free energy and surface pressure. In contrast, prior methods, such as transfer matrix method, require exp((1/ϵ)O(1))\exp\big((1/\epsilon)^{O(1)}\big) computation effort.Comment: 33 pages, 4 figure

    Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. V. Further Results for the Square-Lattice Chromatic Polynomial

    Get PDF
    We derive some new structural results for the transfer matrix of square-lattice Potts models with free and cylindrical boundary conditions. In particular, we obtain explicit closed-form expressions for the dominant (at large |q|) diagonal entry in the transfer matrix, for arbitrary widths m, as the solution of a special one-dimensional polymer model. We also obtain the large-q expansion of the bulk and surface (resp. corner) free energies for the zero-temperature antiferromagnet (= chromatic polynomial) through order q^{-47} (resp. q^{-46}). Finally, we compute chromatic roots for strips of widths 9 <= m <= 12 with free boundary conditions and locate roughly the limiting curves.Comment: 111 pages (LaTeX2e). Includes tex file, three sty files, and 19 Postscript figures. Also included are Mathematica files data_CYL.m and data_FREE.m. Many changes from version 1: new material on series expansions and their analysis, and several proofs of previously conjectured results. Final version to be published in J. Stat. Phy

    On Quantum Markov Chains on Cayley tree II: Phase transitions for the associated chain with XY-model on the Cayley tree of order three

    Full text link
    In the present paper we study forward Quantum Markov Chains (QMC) defined on a Cayley tree. Using the tree structure of graphs, we give a construction of quantum Markov chains on a Cayley tree. By means of such constructions we prove the existence of a phase transition for the XY-model on a Cayley tree of order three in QMC scheme. By the phase transition we mean the existence of two now quasi equivalent QMC for the given family of interaction operators {K}\{K_{}\}.Comment: 34 pages, 1 figur

    The Location and Status of Egret Colonies in Coastal New South Wales

    Get PDF
    Thirteen active egret colonies were located along 800 km of the NSW coastline from Sydney north to the New South Wales-Queensland border. These colonies contained up to four egret species: Great Ardea alba, Intermediate A. intermedia, Little Egretta garzetta, and Cattle Egrets A. ibis. Each colony site is described and its location given. All colonies were located in or near wetlands, and the factors that may be important in determining which wetland is selected for occupation are discussed. The long term future of breeding colonies is examined and a recommendation made about the reservation of potential colony sites
    corecore