9 research outputs found

    ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways

    Get PDF
    The interferon (IFN)–inducible protein Z-DNA binding protein 1 [ZBP1; also known as DNA-dependent activator of IFN regulatory factors (DAI) and DLM-1] was identified as a double-stranded DNA sensor, which instigates innate immune responses. However, this classification has been disputed, and whether ZBP1 functions as a pathogen sensor during an infection has remained unknown. We demonstrated ZBP1-mediated sensing of the influenza A virus (IAV) proteins NP and PB1, triggering cell death and inflammatory responses via the receptorinteracting protein kinase 1 (RIPK1)–RIPK3–caspase-8 axis. ZBP1 regulates NLRP3 (nucleotide and oligomerization domain, leucine-rich repeat–containing protein family, pyrin domain containing 3) inflammasome activation as well as induction of apoptosis, necroptosis, and pyroptosis in IAV-infected cells. ZBP1 deficiency protected mice from mortality during IAV infection owing to reduced inflammatory responses and epithelial damage. Overall, these findings indicate that ZBP1 is an innate immune sensor of IAV and highlight its importance in the pathogenesis of IAV infection.T.-D.K. is supported by the U.S. NIH (AI101935, AI124346, AR056296, and CA163507) and the American Lebanese Syrian Associated Charities; S.M.M. is supported by the National Health and Medical Research Council of Australia R.G. Menzies Early Career Fellowship

    Cathepsin B modulates lysosomal biogenesis and host defense against Francisella novicida infection

    Get PDF
    Lysosomal cathepsins regulate an exquisite range of biological functions, and their deregulation is associated with inflammatory, metabolic, and degenerative diseases in humans. In this study, we identified a key cell-intrinsic role for cathepsin B as a negative feedback regulator of lysosomal biogenesis and autophagy. Mice and macrophages lacking cathepsin B activity had increased resistance to the cytosolic bacterial pathogen Francisella novicida. Genetic deletion or pharmacological inhibition of cathepsin B down-regulated mechanistic target of rapamycin activity and prevented cleavage of the lysosomal calcium channel TRP ML1. These events drove transcription of lysosomal and autophagy genes via transcription factor EB, which increased lysosomal biogenesis and activation of autophagy initiation kinase ULK1 for clearance of the bacteria. Our results identified a fundamental biological function of cathepsin B in providing a checkpoint for homeostatic maintenance of lysosome populations and basic recycling functions in the cell

    Detrimental Type I Interferon Signaling Dominates Protective AIM2 Inflammasome Responses during Francisella novicida Infection

    Get PDF
    Interferons (IFNs) and inflammasomes are essential mediators of anti-microbial immunity. Type I IFN signaling drives activation of the AIM2 inflammasome in macrophages; however, the relative contribution of IFNs and inflammasome responses in host defense is less understood. We report intact AIM2 inflammasome responses in mice lacking type I IFN signaling during infection with F. novicida. Lack of type I IFN signaling conferred protection to F. novicida infection in contrast to the increased susceptibility in AIM2-deficient mice. Mice lacking both AIM2 and IFNAR2 were protected against the infection. The detrimental effects of type I IFN signaling were due to its ability to induce activation of apoptotic caspases and cell death. These results demonstrate the contrasting effects of type I IFN signaling and AIM2 during F. novicida infection in vivo and indicate a dominant role for type I IFNs in mediating detrimental responses despite the protective AIM2 inflammasome responses

    Whole-genome CRISPR screen identifies RAVER1 as a key regulator of RIPK1-mediated inflammatory cell death, PANoptosis

    No full text
    Summary: Transforming growth factor-β-activated kinase 1 (TAK1) is a central regulator of innate immunity, cell death, inflammation, and cellular homeostasis. Therefore, many pathogens carry TAK1 inhibitors (TAK1i). As a host strategy to counteract this, inhibition or deletion of TAK1 induces spontaneous inflammatory cell death, PANoptosis, through the RIPK1-PANoptosome complex, containing the NLRP3 inflammasome and caspase-8/FADD/RIPK3 as integral components; however, PANoptosis also promotes pathological inflammation. Therefore, understanding molecular mechanisms that regulate TAK1i-induced cell death is essential. Here, we report a genome-wide CRISPR screen in macrophages that identified TAK1i-induced cell death regulators, including polypyrimidine tract-binding (PTB) protein 1 (PTBP1), a known regulator of RIPK1, and a previously unknown regulator RAVER1. RAVER1 blocked alternative splicing of Ripk1, and its genetic depletion inhibited TAK1i-induced, RIPK1-mediated inflammasome activation and PANoptosis. Overall, our CRISPR screen identified several positive regulators of PANoptosis. Moreover, our study highlights the utility of genome-wide CRISPR-Cas9 screens in myeloid cells for comprehensive characterization of complex cell death pathways to discover therapeutic targets

    Cathepsin B modulates lysosomal biogenesis and host defense against Francisella novicida infection

    No full text
    Lysosomal cathepsins regulate an exquisite range of biological functions, and their deregulation is associated with inflammatory, metabolic, and degenerative diseases in humans. In this study, we identified a key cell-intrinsic role for cathepsin B as a negative feedback regulator of lysosomal biogenesis and autophagy. Mice and macrophages lacking cathepsin B activity had increased resistance to the cytosolic bacterial pathogen Francisella novicida. Genetic deletion or pharmacological inhibition of cathepsin B down-regulated mechanistic target of rapamycin activity and prevented cleavage of the lysosomal calcium channel TRPML1. These events drove transcription of lysosomal and autophagy genes via transcription factor EB, which increased lysosomal biogenesis and activation of autophagy initiation kinase ULK1 for clearance of the bacteria. Our results identified a fundamental biological function of cathepsin B in providing a checkpoint for homeostatic maintenance of lysosome populations and basic recycling functions in the cell
    corecore