284 research outputs found

    Identification and validation of selected universal stress protein domain containing drought-responsive genes in pigeonpea (Cajanus cajan L.)

    Get PDF
    Pigeonpea is a resilient crop, which is relatively more drought tolerant than many other legume crops. To understand the molecular mechanisms of this unique feature of pigeonpea, 51 genes were selected using the Hidden Markov Models (HMM) those codes for proteins having close similarity to universal stress protein domain. Validation of these genes was conducted on three pigeonpea genotypes (ICPL 151, ICPL 8755, and ICPL 227) having different levels of drought tolerance. Gene expression analysis using qRT-PCR revealed 6, 8, and 18 genes to be ≥2-fold differentially expressed in ICPL 151, ICPL 8755, and ICPL 227, respectively. A total of 10 differentially expressed genes showed ≥2-fold up-regulation in the more drought tolerant genotype, which encoded four different classes of proteins. These include plant U-box protein (four genes), universal stress protein A-like protein (four genes), cation/H(+) antiporter protein (one gene) and an uncharacterized protein (one gene). Genes C.cajan_29830 and C.cajan_33874 belonging to uspA, were found significantly expressed in all the three genotypes with ≥2-fold expression variations. Expression profiling of these two genes on the four other legume crops revealed their specific role in pigeonpea. Therefore, these genes seem to be promising candidates for conferring drought tolerance specifically to pigeonpea

    Concentration of uranium levels in groundwater

    Get PDF
    The uranium isotopes during their course of their disintegration decay into other radioactive elements and eventually decay into stable lead isotopes. The cause of environmental concern is the emanation of beta and gamma radiation during disintegration. The present study tends to estimate uranium in groundwater trapped in granite and gneiss rocks. Besides, the study aims at estimating the radiation during natural disintegration process. The water samples were collected and analyzed following inductively coupled plasma mass spectrometric technique while water sample collection was given to the regions of Kolar District, South India, due to the representation. The significant finding was the observation of very high levels of uranium in groundwater compared to similar assays reported at other nearby districts. Also, the levels were considerable to those compared to groundwater levels of uranium reported by other scientists. On the basis of this study, it was inferred that the origin of uranium was from granite strata and there was a trend of diffusion observed in the course of flow-path of water in the region

    Characterization of doping levels in heteronuclear, gas-phase, van der Waals clusters and their energy absorption from an intense optical field

    Get PDF
    A simple mass spectrometric method has been developed to quantify dopant levels in heteronuclear clusters in the gas phase. The method is demonstrated with reference to quantification of the water content in supersonic beams of water-doped argon clusters. Such doped clusters have assumed much importance in the context of recently-reported doping-induced enhancement in the emission of energetic charged particles and photons upon their interaction with intense laser pulses. We have also measured the energy that a doped cluster absorbs from the optical field; we find that energy absorption increases with increasing level of doping. The oft-used linear model of energy absorption is found to be quantitatively inadequate.Comment: To appear in Chemical Physics Letter

    Plant growth promoting rhizobia: Challenges and opportunities

    Get PDF
    Modern agriculture faces challenges, such as loss of soil fertility, fluctuating climatic factors and increasing pathogen and pest attacks. Sustainability and environmental safety of agricultural production relies on eco-friendly approaches like biofertilizers, biopesticides and crop residue return. The multiplicity of beneficial effects of microbial inoculants, particularly plant growth promoters (PGP), emphasizes the need for further strengthening the research and their use in modern agriculture. PGP inhabit the rhizosphere for nutrients from plant root exudates. By reaction, they help in (1) increased plant growth through soil nutrient enrichment by nitrogen fixation, phosphate solubilization, siderophore production and phytohormones production (2) increased plant protection by influencing cellulase, protease, lipase and β-1,3 glucanase productions and enhance plant defense by triggering induced systemic resistance through lipopolysaccharides, flagella, homoserine lactones, acetoin and butanediol against pests and pathogens. In addition, the PGP microbes contain useful variation for tolerating abiotic stresses like extremes of temperature, pH, salinity and drought; heavy metal and pesticide pollution. Seeking such tolerant PGP microbes is expected to offer enhanced plant growth and yield even under a combination of stresses. This review summarizes the PGP related research and its benefits, and highlights the benefits of PGP rhizobia belonging to the family Rhizobiaceae, Phyllobacteriaceae and Bradyrhizobiaceae

    Breeding Chickpea for Improved Adaptation to the Semi-Arid Tropical Environments

    Get PDF
    Chickpea (Cicer arietinum L.), also known as Garbanzo bean or Bengal gram, is the second most cultivated grain legume grown globally after dry bean (FAOSTAT data, 2007). It is cultivated annually on an area of about 10 million hectares over 50 countries. Over 80% of its area is in the semi-arid tropics (SAT) that encompass most of south Asia, parts of southeast Asia, a swathe across sub-Saharan Africa, much of southern and eastern Africa, and parts of Latin America. These regions are characterized by high atmospheric water demand, a high mean annual temperature, limited and erratic monsoonal rainfall, and nutrient poor soils. The major constraints to chickpea production in SAT include terminal drought and heat stresses, fusarium wilt and Helicoverpa pod borer. Soil salinity is also a major constraint to adaptation of chickpea in some areas, particularly in India, Pakistan, Bangladesh, Iran and Australia. High instances of dry root rot are reported from Sub- Saharan Africa and India. India is the largest chickpea producing country with 64% of global chickpea production (FAOSTAT data, 2007). Chickpea is grown on 6.7 m ha from latitude 32°N in northern India with cooler, long-season environment to 10°N in southern India with warmer, short season environment. There has been a large, shift in chickpea area from north to central and southern India, mainly because of expansion in area under irrigation and wheat cultivation in northern India. During the past four decades, chickpea area declined by about 4.2 m ha in northern and north-eastern states (Punjab, Haryana, Uttar Pradesh and Bihar) and increased by 2.6 m ha in central and southern states (Madhya Pradesh, Maharashtra, Karnataka and Andhra Pradesh). This drastic shift in chickpea cultivation from cooler, long-season environments to warmer, short-season environments resulted in chickpeas being more prone to abiotic and biotic stresses that are prevalent in warm short season environments (e.g. terminal drought and heat stresses). The crop improvement efforts at ICRISAT and National Agricultural Research System (NARS) in SAT countries have largely focused on improving adaptation of chickpea to SAT environments by enhancing resistance/tolerance to biotic and abiotic stresses prevalent in SAT environments. This paper reviews recent progress in breeding chickpea for improved adaptation to the SAT environments

    Tapping the large genetic variability for salinity tolerance in chickpea

    Get PDF
    Salinity is an ever-increasing problem in agriculture worldwide and especially in Australia. Improved genotypes that are well adapted to saline conditions are needed to enhance and sustain production in these areas. A screening of 263 accessions of chickpea, including 211 accessions from ICRISAT’s mini-core collection (10% of the core collection and 1% of the entire collection), showed a six-fold range of variation for seed yield under salinity, with several genotypes yielding 20% more than the previously-released salinity tolerant cultivar CSG8962. No significant relation was found between biomass at the late vegetative stage and final seed yield under salinity. Performance of seed yield under salinity was explained in part by the yield potential under control conditions, and a salinity tolerance component. The major trait related to salinity tolerance was the ability to maintain under salinity a large number of viable pods with seeds. In contrast, the relative seed size under salinity did not differ between tolerant and sensitive genotypes. Preliminary analysis of genotypic data for approximately 50 SSR markers on 211 genotypes revealed some associations with salinity tolerance that deserve a detailed analysis. Future effort should focus on the effect of salinity on the reproductive stage of development

    Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea

    Get PDF
    Drought and salinity are the major factors that limit chickpea production worldwide. We performed whole transcriptome analyses of chickpea genotypes to investigate the molecular basis of drought and salinity stress response/adaptation. Phenotypic analyses confirmed the contrasting responses of the chickpea genotypes to drought or salinity stress. RNA-seq of the roots of drought and salinity related genotypes was carried out under control and stress conditions at vegetative and/or reproductive stages. Comparative analysis of the transcriptomes revealed divergent gene expression in the chickpea genotypes at different developmental stages. We identified a total of 4954 and 5545 genes exclusively regulated in drought-tolerant and salinity-tolerant genotypes, respectively. A significant fraction (~47%) of the transcription factor encoding genes showed differential expression under stress. The key enzymes involved in metabolic pathways, such as carbohydrate metabolism, photosynthesis, lipid metabolism, generation of precursor metabolites/energy, protein modification, redox homeostasis and cell wall component biogenesis, were affected by drought and/or salinity stresses. Interestingly, transcript isoforms showed expression specificity across the chickpea genotypes and/or developmental stages as illustrated by the AP2-EREBP family members. Our findings provide insights into the transcriptome dynamics and components of regulatory network associated with drought and salinity stress responses in chickpea

    The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.)

    Get PDF
    Molecular markers and genetic linkage maps are pre-requisites for molecular breeding in any crop species. In case of peanut or groundnut (Arachis hypogaea L.), an amphidiploid (4X) species, not a single genetic map is, however, available based on a mapping population derived from cultivated genotypes. In order to develop a genetic linkage map for tetraploid cultivated groundnut, a total of 1,145 microsatellite or simple sequence repeat (SSR) markers available in public domain as well as unpublished markers from several sources were screened on two genotypes, TAG 24 and ICGV 86031 that are parents of a recombinant inbred line mapping population. As a result, 144 (12.6%) polymorphic markers were identified and these amplified a total of 150 loci. A total of 135 SSR loci could be mapped into 22 linkage groups (LGs). While six LGs had only two SSR loci, the other LGs contained 3 (LG_AhXV) to 15 (LG_AhVIII) loci. As the mapping population used for developing the genetic map segregates for drought tolerance traits, phenotyping data obtained for transpiration, transpiration efficiency, specific leaf area and SPAD chlorophyll meter reading (SCMR) for 2 years were analyzed together with genotyping data. Although, 2–5 QTLs for each trait mentioned above were identified, the phenotypic variation explained by these QTLs was in the range of 3.5–14.1%. In addition, alignment of two linkage groups (LGs) (LG_AhIII and LG_AhVI) of the developed genetic map was shown with available genetic maps of AA diploid genome of groundnut and Lotus and Medicago. The present study reports the construction of the first genetic map for cultivated groundnut and demonstrates its utility for molecular mapping of QTLs controlling drought tolerance related traits as well as establishing relationships with diploid AA genome of groundnut and model legume genome species. Therefore, the map should be useful for the community for a variety of applications
    • …
    corecore